ارزیابی عملکرد دیوارهای برشی بتنی طرح شده به روش طراحی مستقیم براساس تغییرمکان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی عمران، دانشگاه صنعتی نوشیروانی بابل، بابل، ایران.

2 گروه مهندسی عمران، دانشکده مهندسی و فناوری، دانشگاه مازندران، بابلسر، ایران.

چکیده

در سال‌های اخیر مفاهیم طراحی لرزه‌ای سازه‌ها بر اساس عملکرد گسترش قابل توجهی یافته است. در این میان روش طراحی مستقیم بر اساس تغییرمکان، معیار عملکرد سازه را بر اساس مقدار بیشینه تغییرمکان سازه در زلزله تعیین می‌کند. بدین منظور برای یک سطح عملکرد از پیش تعیین شده، سطح خسارت در اعضای سازه‌ای بر اساس مقادیر کرنش و در اعضای غیرسازه‌ای بر اساس تغییرمکان نسبی طبقات تعریف می‌شود. سپس تغییرمکان متناظر با این سطح خسارت محاسبه شده و به عنوان تغییرمکان هدف در نظر گرفته می‌شود. بنابراین انتظار می‌رود که سازه طراحی شده به این روش، تحت زلزله سطح طرح به تغییرمکان هدف و کرنش و تغییرمکان نسبی از پیش تعیین شده برسد. در این تحقیق جهت بررسی برآورده شدن اهداف طراحی، ابتدا 12 ساختمان‌ با سیستم باربر لرزه‌ای دیوار برشی شامل ساختمان‌های 5، 10 و 20 طبقه برای دو سطح خطر زلزله و دو نوع خاک بستر به روش طراحی مستقیم بر اساس تغییرمکان طرح شد. ساختمان‌های طراحی شده تحت 45 رکورد مصنوعی و 10 رکورد طبیعی زلزله قرار گرفتند و مقادیر تغییرمکان جانبی، انحنا و تغییرمکان نسبی طبقات تعیین گردید. نتایج تحلیل‌های دینامیکی غیرخطی نشان می‌دهد که میانگین تغییرمکان جانبی، تغییرمکان نسبی طبقات و مقادیر انحنا تقریبا برابر با اهداف طراحی و تا حدودی کمتر است. بنابراین، روش طراحی مستقیم بر اساس تغییرمکان، اهداف عملکردی را به خوبی برآورده می‌نماید.

کلیدواژه‌ها


عنوان مقاله [English]

Performance Evaluation of RC Shear Walls Designed by Direct Displacement Based Design

نویسندگان [English]

  • Saeid Abdi 1
  • Horr Khosravi 1
  • Amir Hossein Jafarieh 2
1 Department of Civil Engineering, Babol Noshirvani University of Technology, Babol, Iran
2 Assistant Professor / Department of civil Engineering, Faculty of engineering and technology, University of Mazandaran, Babolsar, Iran
چکیده [English]

In recent years, performance-based design has developed significantly. Meanwhile, the direct displacement-based design (DDBD) determines the performance criteria on the basis of the maximum displacement of structure. For this purpose, for a predetermined performance level, the level of damage in structural and non-structural elements is defined based on tensile and compressive strain values and inter-story drift ratio, respectively. Then, the displacement corresponding to this level of damage is calculated and is considered as a target displacement. Using design displacement spectrum, the stiffness and strength of structure is adjusted to achieve the target displacement. Therefore, it is expected that the structures designed based on DDBD approach, reach the predetermined target displacement, strain values and inter-story drifts. In this research, in order to investigate the fulfillment of the design goals, first 12 buildings with shear wall systems were designed. They include 5-, 10- and 20-story buildings designed for two levels of earthquake hazard levels and two site classes. The designed buildings were subjected to 45 artificial and 10 natural earthquake records and the displacement, curvature, and inter-story drift ratio were determined. The nonlinear dynamic analysis results show that the average value of story displacements, inter-story drifts and curvatures are almost equal to the design goals and somewhat less. Therefore, the DDBD method meets the performance objectives well.

کلیدواژه‌ها [English]

  • DDBD
  • Performance objective assessment
  • RC Shear wall
  • Nonlinear dynamic analysis
  1. FEMA-356, Prestandard and Commentary for the Seismic Rehabilitation of Buildings American Society of Civil Engineers, 2000.
  2.  ATC-40, Seismic Evaluation and Retrofit of Reinforced Concrete Buildings: Applied Technology Council, 1996.
  3. ASCE/SEI (ASCE/Structural Engineering Institute), Minimum design loads for buildings and other structures, ASCE/SEI 7-16, Reston, VA, 2016. [E-book] Available: ascelibrary.org
  4. C. Goel and S. H. Chao, Performance-based plastic design: earthquake-resistant steel structures. International Code Council, 2008.
  5. N. Priestley, G. M. Calvi, and M. J. Kowalsky, “Displacement based seismic design of structures,” In Iuss Press, 2007.
  6.   B. Panagiotakos and M.N. Fardis, “Deformation-Controlled Earthquake-Resistant Design of RC Buildings,” Journal of Earthquake Engineering, vol. 3 no. 4, pp. 498-518, 1999.
  7. P. Browning, “Proportioning of Earthquake-Resistant RC Building Structures,” Journal of the Structural Engineering, ASCE, vol. 127, no. 2, pp. 145-151, 2001.
  8. A. Aschheim and E. F. Black, “Yield Point Spectra for Seismic Design andRehabilitation,” Earthquake Spectra, vol. 16, no. 2, pp. 317-336, 2000.
  9. K. Chopra and R. K. Goel, “Direct Displacement-Based Design: Use of Inelastic vs. Elastic Design Spectra,” Earthquake Spectra, vol. 17, no. 1, pp. 47-65, 2001.
  10. A. Freeman, “The Capacity Spectrum Method as a Tool for Seismic Design,” Proceedings of the 11th European Conference on Earthquake Engineering, 1998, pp. 6-11.
  11. SEAOC, Recommended Lateral Force Requirements and Commentary, 7th ed, 1999.
  12. J. Kappos and A. Manafpour, “Seismic Design of R/C buildings with the Aid of Advanced Analytical Techniques,” Engineering Structures, vol. 23, no. 4, pp. 319-332, 2001.
  13.   J. Sullivan, G. M. Calvi, M. J. N. Priestley, and M. J. Kowalsky, “The limitations and performances of different displacement-based design methods,” Journal of Earthquake Engineering, vol. 7, pp. 201-241,‏ 2003.
  14. Sharma, R. K. Tripathi, and G. Bhat, “Comparative performance evaluation of RC frame structures using direct displacement-based design method and force-based design method,” Asian Journal of Civil Engineering, vol. 21, no. 3, pp. 381-394, 2020.
  15. Indian Standard (IS), Criteria for earthquake resistant design of structures, part-1 general provisions and building sixth revision, 5th, New Delhi: Bureau of Indian standards, 2016.
  16. Indian Standard (IS) 456, "Code of Practice for Plain and Reinforced Concrete", 4th, New Delhi: Bureau of Indian standards, 2000.
  17. Zhang, M. S. Alam, S. Khan, and J. Jiang, “Seismic performance comparison between force-based and performance-based design as per Canadian Highway Bridge Design Code (CHBDC) 2014,” Canadian Journal of Civil Engineering, vol. 43, no 8, pp. 741-748, 2016.
  18. Canadian Standards Association (CSA), Canadian Highway Bridge Design Code S6-14., Toronto, Canada, 2014.‏
  19. M. Hosseini and A. Karamodin, “Design and evaluation of zipper-braced frames using Performance-Based Plastic Design,” In Proc. of 12th International Congress on Civil Engineering, Mashhad, Iran, 2021. (In Persian)
  20. S. Abdolmohammadi and K. Shakeri, “Investigation of Performance Based Plastic Design method of steel moment frames with RBS connections,” Journal of Steel and Structures, vol. 9, no. 18, pp. 15-33, 2016. (In Persian)
  21. Bahar and F. Gozasht, “Seismic evaluation of regular MR steel frames designed by Direct Displacement Based Method,” Bulletin of Earthquake Science and Engineering, vol. 9, no. 18, pp. 47-62, 2015. (In Persian)
  22. M. Razzaz and H. Shariatmadar, “Evaluation of coupled-shear walls subjected to near-field earthquakes,” Journal of Ferdowsi Civil Engineering, vol. 27, no. 1, pp. 1-16, 2016. (In Persian)
  23. Zeynalian and M. Mokhtari, “Displacement control based analytical description of pinching, sliding and degrading hysteretic system,” Journal of Ferdowsi Civil Engineering, vol. 28, no. 2, pp. 39-56, 2017. (In Persian)
  24. Sadeghizadeh and J. Akbari, “Hybrid force-displacement based seismic design method for eccentrically braced steel frames,” Journal of Ferdowsi Civil Engineering, vol. 29, no. 2, pp. 119-130, 2017. (In Persian)
  25. Esmaeiltabar Nesheli, J. Vaseghi Amiri, and H. Khosravi, “Comparison of simplified MVLEM model with Fiber model in nonlinear modeling of RC shear wall,” Journal of Structural and Construction Engineering, vol. 7, no. 1, pp. 126-140, 2020. (In Persian)
  26. Hajimohammadi, H. Khosravi, and R. Dezvareh, “The influence of ground motion duration on maximum displacement of elasto-plastic SDOFs,” Journal of Ferdowsi Civil Engineering, vol. 35, no. 1, pp. 75-88, 2022. (In Persian)
  27. McKenna, G. L. Fenves, and M. H. Scott, “Open system for earthquake engineering simulation,” University of California, Berkeley, CA, 2000.
  28. B. Mander, M. J. Priestley, and R. Park, “Theoretical stress-strain model for confined concrete,” Journal of Structural Engineering, vol. 114, no. 8, pp. 1804-1826, 1988.
  29. Luu, I. Ghorbanirenani, P. Leger, and R. Tremblay, “Numerical modeling of slender reinforced concrete shear wall shaking table tests under high-frequency ground motions,” Journal of Earthquake Engineering, vol. 17, no. 4, pp. 517-542, 2013.
  30. Luu, P. Léger, and R. Tremblay, “Seismic demand of moderately ductile reinforced concrete shear walls subjected to high-frequency ground motions,” Canadian journal of civil engineering, vol. 41, pp. 125-135, 2014.
  31. ATC72-1, Modeling and Acceptance Criteria for Seismic Design and Analysis of Tall Buildings: ATC/PEER, 2010.
  32. Abdi, H. Khosravi, and A. H. Jafarieh, “Seismic force demand on RC shear walls for direct displacement‐based design,” Structural Concrete, vol. 23, no. 3, pp. 1508-1532, 2022.
  33. M. Atkinson, “Earthquake time histories compatible with the 2005 National building code of Canada uniform hazard spectra,” Canadian Journal of Civil Engineering, vol. 36, no. 6,  pp. 991-1000, 2009.
CAPTCHA Image