پاکسازی یک خاک رسی آلوده به ماده دی متیل فتالات با استفاده از روش الکتروکینتیک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه آبیاری و آبادانی، دانشکده مهندسی و فناوری، دانشگاه تهران. کرج، ایران.

2 گروه آبیاری و آبادانی، دانشکده مهندسی و فناوری، دانشگاه تهران; کرج، ایران

3 گروه صنایع غذایی، دانشکده مهندسی و فناوری، دانشگاه تهران، کرج، ایران

4 گروه آبیاری و آبادانی، دانشکده مهندسی و فناوری، دانشگاه تهران، کرج،ایران.

10.22067/jfcei.2023.79475.1188

چکیده

در این کار تحقیقاتی پاکسازی یک خاک رسی آلوده به ماده آلاینده دی متیل فتالات از روش الکتروکنتیک مورد مطالعه قرار گرفت. ابتدا میزان حداکثر جذب این ماده به وسیله خاک مورد نظر تعیین گردید. پس از آن خاک آلوده با نسبت g/ mg 04/0 تهیه و به دستگاه الکتروکنتیک انتقال یافت. برای افزایش راندمان پاکسازی از محلولهای NaOH و Tween80 در مخزن آند استفاده گردید. علاوه بر آن یک آزمایش با آب مقطر به عنوان آزمایش مرجع هم انجام شد. مقادیر pH و EC مخازن آند و کاتد و حجم آب خروجی از خاک در طول آزمایش اندازه­گیری گردید. نتایج نشان داد  که در انتهای آزمایش pH در مخزن آند برابر با 8/4، 27/3 و 6/2 برای محلولهای NaOH و Tween80 و آب مقطر می­باشد و حجم مایع خروجی برای NaOH  1165 میلی­لیتر بود که برای سایر محلولها 20 درصد کمتر از آن بود. مقاومت خاک هم با افزایش فاصله از آند افزایش یافته و مقدار آن در اطراف کاتد 14 کیلوپاسکال برای NaOH حاصل گردید که نسبت به محلولهای آب مقطر و Tween80 به میزان 50 و 57 درصد بیشتر بود. نتایج پاکسازی نشان داد که درصد پاکسازی در کاتد کمتر از آند است. پاکسازی برای Tween80 در اطراف آند و کاتد به ترتیب 88/53 و 65/16 درصد می­­باشد. لیکن برای محلول NaOH این مقادیر به 82/50 و 26/23 درصد می­رسد. از طرفی برای آب مقطر انباشته شدن آلاینده به میزان 85/28 درصد در کاتد مشاهده می­گردد. نتایج مشخص نمودند اثر پاکسازی NaOH بیشتر از سایر محلولها می­باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Remediation of A Clay Soil Contaminated With Dimethyl Phthalate By ‎Using Electrokinetic Method

نویسندگان [English]

  • Ali Raeesi Estabragh 1
  • Hesam Fathali 2
  • Keramatoallah Rezaee tireh shabankareh 3
  • Hoorfar Abdolhossein 4
1 Geotechnical Engineering, Irrigation and Reclamation Department, University of Tehran.
2 Hydraulic Structures, Irrigation and Reclamation Department, Tehran University,karaj. Iran
3 , Department of Food Industry, Faculty of Engineering and Technology, University of Tehran, Karaj, Iran
4 Department of Irrigation and Development, Faculty of Engineering and Technology, University of Tehran, Karaj, Iran.
چکیده [English]

In this research work, the remediation of a clay soil contaminated with dimethyl phthalate ‎was ‎studied by using electrokinetic method. Contaminated soil was made with the ratio ‎of 0.04 mg/g. ‎Non-ionic (Tween 80) surfactant and solution of 0.1 M NaOH were ‎used as anolyte. A reference ‎test was also considered with distilled water as ‎anolyte and catholyte. pH and EC and volume of ‎flow out fluid were measured ‎during the tests in both electrode reservoirs. At the end of each test ‎the shear ‎strength, pH, EC and degree of remediation of soil was measured at different ‎distance ‎from anode. The removal of contaminated was measure by a GC (Gas ‎Chromatography) apparatus. ‎The results showed that the amount of flow out fluid ‎for NaOH was nearly 20% more than the ‎solution of Tween 80 and distilled water. The ‎results also indicated that the strength of soil for ‎different solution is increased ‎by increasing the distance from anode. The value of it around the ‎cathode for ‎solution of NaOH was 14 kPa that was about 50 and 57% more than the distilled ‎water ‎and Tween 80. It was found that the degree of remediation at cathode is less than ‎anode. The ‎percentage of remediation for Tween 80 solution around the anode and ‎cathode were 53.88 and ‎‎16.5% respectively but for NaOH they changed to 50.82 and ‎‎23.26 near anode and cathode ‎reservoir. It was resulted that the effectiveness of NaOH ‎solution in remediation of soil was more ‎than the other used solutions.

کلیدواژه‌ها [English]

  • Electrokinetic
  • Clay soil
  • Dimethyl phthalate
  • Remediation
[1] D. Reed, Structural adjustment, the environment and sustainable development. Routledge, 2013.
[2] Y. B. Acar, R. J. Gale, A. N. Alshawabkeh, R. E. Marks, S. Puppala, M. Bricka, and R. Parker, “Electrokinetic remediation: basics and technology status,” Journal of hazardous materials, vol. 40, no. 2, pp. 117-137, 1995.
[3] H. D. Sharma, K. R. Reddy, Geoenvironmental engineering: site remediation, waste containment, and emerging waste management technologies, John Wiley & Sons, 2004.
[4] A. Altaee, R. Smith, and S. Mikhalovsky, “The feasibility of decontamination of reduced saline sediments from copper using the electrokinetic process,” Journal of environmental management, vol. 88, no. 4, pp. 1611-1618, 2008.
[5] S. Pamukcu, J. K. Wittle, “Electrokinetic removal of selected heavy metals from soil,” Environmental Progress, vol. 11, no. 3, pp. 241-50, 1992.
[6] K. R. Reddy, R. E. Saichek, “Enhanced electrokinetic removal of phenanthrene from clay soil by periodic electric potential application,” Journal of Environmental Science and Health, Part A, vol. 39, no. 5, pp. 1189-1212, 2004.
[7] H. S. Gibbs, “Soils and their utilization in the Wellington district,” InProc. NZ Soc, Soil Sci, vol. 4, pp. 4-12, 1960.
[8] R. Hammett, A study of the process involved in electroreclamation of ‎contaminated soils, MSc thesis, The University of Manchester, Manchester, UK, 1980.
[9] B. A. Segall, “Practical considerations in the use of electro-kinetics. InProceed- 746 ings of the Workshop Electro-kinetic Treat. Its Appl,” Environ.-Geotech. Engrg, vol. 747, pp. 1-9, 1986.
[10] R. Lageman, W.Pool and G.Seffinga, “Electro-reclamation: theory and practice,” Chemistry and Industry, vol. 18, pp. 585-590, 1989.
[11] C. J. Bruell, B. A. Segall, and M. T. Walsh, “Electroosomotic removal of gasoline   hydrocarbons and TCE from clay,” Journal of Environmental Engineering, vol. 118, no. 1, pp. 68-83, 1992.
[12] S. Pamukcu, J. K. Wittle, D. L. Wise, And D. J. Trantolo, “Remediation of Hazardous Waste Contaminated Soils,” pp. 245-298, 1994.
[13] A. P. Shapiro, R.  F. Probstein, “Removal of contaminants from saturated clay by electroosmosis,” Environmental Science & Technology, vol. 27, no. 2, pp. 283-91, 1993.
[14] Y. B. Acar, A. N. Alshawabkeh, “Principles of electrokinetic remediation,” Environmental science & technology, vol. 27, no. 13, pp. 2638-47, 1993.
[15] F. Lancelot, H. Londiche, and G. De Marsily, “Experimental results on the influence of electric fields on the migration of oil, ionic species and water in porous media,” Journal of Petroleum Science and Engineering, vol. 4, no. 1, pp. 67-74, 1990.
[16] R. E. Saichek, and K. R. Reddy, “Electrokinetically enhanced remediation of hydropHobic organic compounds in soils: a review,” Critical reviews in environmental science and technology, vol. 35, no. 2, pp. 115-192, 2005.
[17] T. Alcántara, M. Pazos, S. Gouveia, C.  Cameselle, and M. A.  Sanromán, “Remediation of phenanthrene from contaminated kaolinite by electroremediation-Fenton technology,” Journal of Environmental Science and Health, part A, vol. 43, no. 8, pp. 901-906, 2008.
[18] H. Han, Y. J.  Lee, S. H. Kim, and J. W. Yang, “Electrokinetic remediation of soil contaminated with diesel oil using EDTA–Cosolvent solutions,” Separation Science and Technology, vol. 44, no. 10, pp. 2437-2454, 2009.
[19] F. Ma, B. Wu, Q. Zhang, D. Cui, Q. Liu, C. Peng, F. Li And Q. Gu, “An innovative method for the solidification/stabilization of PAHs-contaminated soil using sulfonated oil,” Journal of hazardous materials, vol. 344, pp.742-748, 2018.
[20] A. R. Estabragh, A. T, Bordbar, F. Ghaziani, and A.A. Javadi, “Removal of MTBE from a clay soil using electrokinetic technique,” Environmental Technology, vol. 37, no. 14, pp. 1745-1756, 2016.
[21] W. Du, H. Zou, Y. C. Sun, R. Zhu, and G. S. Zhang, “Surfactant-enhanced electrokinetic remediation of chromium and phenanthrene cross-polluted soils,” Environmental Engineering Science, vol. 34, no. 12, pp. 908-916, 2017.
[22] A. R. Estabragh, M. Lahoori, A. A. Javadi, and J. Abdollahi, “Effect of a surfactant on enhancing efficiency of the electrokinetic method in removing anthracene from a clay soil,” Journal of Environmental Chemical Engineering, vol. 7, no. 5, 2019. 
[23] Y. Li, L. Jiang, “Comparison of the crude oil removal effects of different surfactants in electrokinetic remediation of low-permeability soil,” Journal of Environmental Chemical Engineering, vol. 9, no. 4, pp. 105190, 2021.
[24] A. B. Fardin, A. J. Zanjani, and A. K. Darban, “Application of enhanced electrokinetic remediation by coupling surfactants for kerosene-contaminated soils: Effect of ionic and nonionic surfactants,” Journal of Environmental Management, vol. 277, no. 1, pp. 111422, 2021.
[25] F.Biabanaki, J. Neshati, and M. Ehteshami, “Using the electrokinetic remediation (EKR) technique for the soil remediation from the contaminants,” Geosystem Engineering, pp. 1-9, 2022.
[26] B. Gidudu, E. M. Chirwa, “The Role of pH, Electrodes, Surfactants, and Electrolytes in Electrokinetic Remediation of Contaminated Soil,” Molecules, vol. 27, no. 21, pp. 7381, 2022.
[27] P. Ventrice, D. Ventrice, E. Russo, and G. De Sarro, “Phthalates: European regulation, chemistry, pharmacokinetic and related toxicity,” Environmental toxicology and pharmacology, vol. 36, no. 1, pp. 88-96, 2013.
[28] J. Yang, Y. Li, Y. Wang, J. Ruan, J. Zhang, and C. Sun, “Recent advances in analysis of phthalate esters in foods,” TrAC Trends in Analytical Chemistry, vol. 72, pp. 10-26, 2015.
[29] M. Mostafa Lu, F. Shariati, and S. Shariati, “Investigation of phthalates in Anzali lagoon sediments, Iran,” Wetland Ecobiology Journal, vol. 10, no. 37, pp. 37-47, 2017..(in persian)
[30] C.S. Jeon, J. S. Yang, K. J. Kim, and K. Baek, “Electrokinetic removal of petroleum hydrocarbon from residual clayey soil following a washing process,” CLEAN–Soil, Air, Water, vol. 38, no. 2, pp.189-193, 2010.
[31] A. R. Estabragh, A. T. Bordbar, And A. A. Javadi, “Effect of Quality Electrolyte Fluid on Removing MTBE from a Clay Soil Using Electrokinetic Technique,” American Society of Civil Engineers, vol. 144, 2018.
[32] J. G. Hunter, CG. Uchrin, “Adsorption of pHthalate esters on soil at near saturation conditions,” Journal of Environmental Science & Health, Part A, vol. 35, no. 9, pp. 1503-1515, 2000.
[33] J. K. Mitchell, K. Soga, Fundamentals of soil behavior, New York: John Wiley & Sons, pp. 280-304, 2005.
[34] EPA (U.S. Environmental Protection Agency), Phthalate Esters By Gas Chromatography With Electron Capture Detection (GC/ECD), Washington, D.C, 1996.
[35] A. Rittirong, R. S. Douglas, J. Q. Shang, and E. C. Lee, “Electrokinetic improvement of soft clay 
CAPTCHA Image