اثر منیزیم‌اکسید در به‌سازی یک خاک رسی آلوده به فنانترن

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه آبیاری و آبادانی، دانشکدۀ مهندسی و فناوری، دانشگاه تهران.

چکیده

در این پژوهش، اثر مادۀ افزودنی منیزیم­اکسید (MgO) برای به‌سازی یک خاک رسی معمولی و نیز خاک آلوده­ شده به مادۀ آلی فنانترن با انجام آزمایش­های آزمایشگاهی گوناگون (شامل حدود اتربرگ، تراکم استاندارد، مقاومت فشاری تک­محوری (UCS) و میکروسکوپ الکترونی روبشی (SEM)) مورد مطالعه قرار گرفت. خاک آلوده به فنانترن به‌صورت مصنوعی در آزمایشگاه تهیه گردید. درصدهای وزنی منیزیم‌اکسید مورد استفاده برای به‌سازی خاک معمولی و خاک آلوده معادل 5، 10، 20 و 30% می‌باشند. نتایج نشان داد که افزودن فنانترن به خاک سبب تغییر ساختار خاک و کاهش درصد رطوبت بهینه (wopt)، حدود اتربرگ، مقاومت تک­محوری و ضریب کشسانی مربوط به 50% از مقاومت نهایی (E50) خاک می­شود. هم‌چنین نتایج مشخص کرد که با افزودن منیزیم­اکسید به خاک طبیعی و خاک آلوده، مقاومت و E50 افزایش می­یابد، به­طوری‌که این افزایش تابعی از درصد مادۀ افزودنی و زمان عمل­آوری می­باشد. علاوه‌بر این براساس نتایج SEM مشخص گردید که محصولات کربناسیون تولیدشده در نمونه­های به‌سازی‌شده سبب افزایش مقاومت می­گردند.

کلیدواژه‌ها


عنوان مقاله [English]

Improvement the Behaviors of a Clay Soil Contaminated with Phenanthrene by Using MgO

نویسندگان [English]

  • Mohadeseh Amini
  • Ali Raeesi Estabragh
  • Jamal Abdollahi
Irrigation and Reclamation Department, Tehran University, Iran.
چکیده [English]

In this work, the effect of MgO on the treatment of a natural and contaminated clay soil with phenanthrene was studied through conducting various experimental tests including Atterberg limits, standard compaction, uniaxial compressive strength (UCS), and SEM tests. The contaminated soil was prepared artificially in the lab. Natural and contaminated soil were mixed with 5, 10, 20, and 30% of MgO as an agent. The results showed that phenanthrene changes the structure of the soil and causes a reduction in Atterberg limits, wopt, UCS, and E50 of the soil. The results also indicated that the UCS and E50 of mixture natural and contaminated soil with different percentages of MgO are increased and the amount of increasing of them is dependent on the percentage of MgO and curing time. SEM results also showed that the formation of carbonation products due to hydration of MgO is effective in increasing the strength of treated soil samples.

کلیدواژه‌ها [English]

  • MgO
  • Phenanthrene
  • UCS
  • SEM
  1. شاکری، ع.، رضی کرد محله، ل. و اسماعیلی، ا. «بررسی غلظت هیدروکربن‌های نفتی کل، پلی هیدروآروماتیک­ها و آلیفاتیک­ها در خاک مناطق نفتی استان بوشهر»، پانزدهمین همایش انجمن زمین­شناسی ایران، تهران، دانشگاه خوارزمی، (1390).
  2. Harvey, R. G., "Polycyclic Aromatic Hydrocarbons: Chemistry and Carcinogenicity", Cambridge University Press, New York, (1991).
  3. Kuppusamy, S., Thavamani, P., Venkateswarlu, K., Lee, Y. B., Naidu, R., and Megharaj, M., "Remediation Approaches for Polycyclic Aromatic Hydrocarbons (PAHs) Contaminated Soils: Technological Constraints, Emerging Trends and Future Directions", Chemosphere, Vol. 168, pp. 944–968, (2017).
  4. Kharisov, B.I., Dias, H.V.R., and Kharissova, O. V., "Nanotechnology-based Remediation of Petroleum Impurities from Water", Journal of Petroleum Science and Engineering, Vol. 122, pp. 705–718, (2014).
  5. https://www.ioptc.ir
  6. علایی، ا.، وکیلی، ف. و مهرداد شریف، ا.ع.، «گیاه‌پالایی خاک‌های آلوده به فنانترن بااستفاده از گیاه سورگوم»، نشریه محیط­شناسی، دورۀ 36، شمارۀ 53، صص. 79-88، (1389).
  7. Arbabi, M., Nasseri, S., and Chimezie, A., "Biodegradation of Polycyclic Aromatic Hydrocarbons (PAHs) in Petroleum Contaminated Soils", Iranian Journal of Chemistry and Chemical Engineering, 28, No. 3, pp. 53–59, (2009).
  8. Meegoda, N. J., and Ratnaweera, P., "Compressibility of Contaminated Fine-grained Soils", Geotechnical Testing Journal, 17, No. 1, pp. 101–112, (1994).
  9. Khamehchiyan, M., Hossein Charkhabi, A., and Tajik, M., "Effects of Crude Oil Contamination on Geotechnical Properties of Clayey and Sandy Soils", Engineering Geology, 89, No. 3–4, pp. 220–229, (2007).
  10. Estabragh, A. R., Khatibi, M., and Javadi, A. A., "Effect of Cement on Treatment of a Clay Soil Contaminated with Glycerol", Journal of Materials in Civil Engineering, 28, No. 4, pp. 04015157-10, (2016).
  11. خلوصی، م.م.، رئیسی استبرق، ع، عبدالهی، ج.، «بررسی تغییرات خصوصیات فیزیکی و مکانیکی خاک رسی آلوده به مادۀ هیدروکربنی با افزودن سیمان»، نشریه مهندسی عمران مدرس، دورۀ 17، شمارۀ 2، صص. 93-106، (1396).
  12. حاجی محمدی، م. و حمیدی، ا.، «به‌سازی رفتار مکانیکی رس کائولینیت آلوده به آنتراسن با سیمان و آهک»، نشریه تحقیقات آب و خاک ایران (علوم کشاورزی ایران) ، دورۀ 51، شمارۀ 7، صص. 1783-1795، (1399).  
  13. Sherwood, T. P., "Soil Stabilization with Cement and Lime: State of the Art Review", HMSO Books, London, (1993).
  14. Bergado, D.T., Anderson, L.R., Miura, N., and Balasubramaniam, A.S., "Soft Ground Improvement in Lowland and Other Environments", ASCE Press, New York, (1996).
  15. Al-Tabbaa, A., "Soil Mixing in the UK 1991–2001: State of Practice Report", Proceedings of the Institution of Civil Engineers - Ground Improvement, Vol. 7, No. 3, pp. 117–126, (2003).
  16. Puppala, A. J., Wattanasanticharoen, E., and Punthutaecha, K., "Experimental Evaluations of Stabilisation Methods for Sulphate-rich Expansive Soils", Proceedings of the Institution of Civil Engineers - Ground Improvement, Vol. 7, No. 1, pp. 25–35, (2003).
  17. Chew, S. H., Kamruzzaman, A. H. M., and Lee, F. H., "Physicochemical and Engineering Behavior of Cement Treated Clays", Journal of Geotechnical and Geoenvironmental Engineering, Vol. 130, No. 7, pp. 696–706, (2004).
  18. Lee, F.-H., Lee, Y., Chew, S.-H., and Yong, K.-Y., "Strength and Modulus of Marine Clay-Cement Mixes", Journal of Geotechnical and Geoenvironmental Engineering, Vol. 131, No. 2, pp. 178–186, (2005).
  19. Kitazume, M., and Terash, M., "The deep mixing method. Leiden, the Netherlands", CRC Press/Balkema, Leiden, The Netherlands, (2013).
  20. Chen, H., Jiang, Y., Zhang, W., and He, X., "Experimental Study of the Stabilization Effect of Cement on Diesel Contaminated Soil", Quarterly Journal of Engineering Geology and Hydrogeology, Vol. 50, No. 2, pp. 199–205, (2017).
  21. Estabragh, A. R., Kholoosi, M. M., Ghaziani, F., and Javadi, A. A., "Stabilization and Solidification of a Clay Soil Contaminated with MTBE", Journal of Environmental Engineering, Vol. 143, No. 9, pp. 04017054-8, (2017).
  22. Estabragh, A.R., Jahani, A., Javadi, A.A., and Babalar, M., "Assessment of Different Agents for Stabilisation of a Clay Soil", International Journal of Pavement Engineering, Published online, (2020).
  23. Estabragh, A. R., Khajepour, H., Javadi, A. A., and Amini, M., "Effect of Forced Carbonation on the Behaviour of a Magnesia-stabilised Clay Soil", International Journal of Pavement Engineering, Published online, (2020).
  24. Oluwatuyi, O. E., Ojuri, O. O., and Khoshghalb, A., "Cement-lime Stabilization of Crude Oil Contaminated Kaolin Clay", Journal of Rock Mechanics and Geotechnical Engineering, Vol. 12, No. 1, pp. 160–167, (2020).
  25. جانداری، ف.، رییسی استبرق، ع.، عبدالهی علی­بیک، ج.، امینی، م. و انصار شوریجه، آ.، «به‌سازی خاک آلوده به مادۀ آلی گلیسرول با منیزیم­اکسید»، نشریۀ زمین­شناسی مهندسی خوارزمی، (پذیرفته‌شده).
  26. Yi, Y., Lu, K., Liu, S., and Al-Tabbaa, A., "Property Changes of Reactive Magnesia–Stabilized Soil Subjected to Forced Carbonation", Canadian Geotechnical Journal, Vol. 53, No. 2, pp. 314–325, (2016).
  27. Li, W., Ni, P., and Yi, Y., "Comparison of Reactive Magnesia, Quick Lime, and Ordinary Portland Cement for Stabilization/Solidification of Heavy Metal-Contaminated Soils", Science of the Total Environment, Vol. 671, pp. 741–753, (2019).
  28. Yang, Y., Ruan, S., Wu, S., Chu, J., Unluer, C., Liu, H., and Cheng, L., "Biocarbonation of Reactive Magnesia for Soil Improvement", Acta Geotechnica, Vol. 16, No. 4, pp. 1113–1125, (2021).
  29. Wang, F., Xu, J., Zhang, Y., Shen, Z., and Al-Tabbaa, A., "MgO-GGBS Binder–Stabilized/Solidified PAE-Contaminated Soil: Strength and Leachability in Early Stage", Journal of Geotechnical and Geoenvironmental Engineering, Vol. 147, No. 8, pp. 04021059-7, (2021).
  30. Shand, M., Al-Tabbaa, A., Qian, J., Mo, L., and Jin, F., "Magnesia Cements: From Formulation to Application", Elsevier, (2020).
  31. Wexler, P., Anderson, B.D., Gad, S.C., Hakkinen, P.B., Kamrin, M., De Peyster, A., Locey, B., Pope, C., Mehendale, H.M., and Shugart, L.R., "Encyclopedia of Toxicology", Vol. 3, Academic Press, (2005).
  32. López-Vizcaíno, R., Sáez, C., Cañizares, P., and Rodrigo, M. A., "The Use of a Combined Process of Surfactant-Aided Soil Washing and Coagulation for PAH-contaminated Soils Treatment", Separation and Purification Technology, Vol. 88, pp. 46–51, (2012).
  33. Alcántara, T., Pazos, M., Cameselle, C., and Sanromán, M. A., "Electrochemical Remediation of Phenanthrene from Contaminated Kaolinite", Environmental Geochemistry and Health, Vol. 30, No. 2, pp. 89–94, (2008).
  34. Chang, M. C., Huang, C. R., and Shu, H. Y., "Effects of Surfactants on Extraction of Phenanthrene in Spiked Sand", Chemosphere, Vol. 41, No. 8, pp. 1295–1300, (2000).
  35. ASTM D698-12 ε2, "Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kN-m/m3))", ASTM International, West Conshohocken, PA, (2012).
  36. ASTM D4318-17 ε1, "Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils", ASTM International, West Conshohocken, PA, (2017).
  37. ASTM D1633-17, "Standard Test Methods for Compressive Strength of Molded Soil-Cement Cylinders", ASTM International, West Conshohocken, PA, (2017).
  38. Yi, Y., Liska, M., Unluer, C., and Al-Tabbaa, A., "Carbonating Magnesia for Soil Stabilization", Canadian Geotechnical Journal, Vol. 50, No. 8, pp. 899–905, (2013).

 



CAPTCHA Image