بررسی قابلیت باکتری Sporsarcina Pasteuri در بهسازی و بهپالایی خاک‌های آلوده هیدروکربنی

نوع مقاله : پژوهشی

نویسندگان

1 دانشکده مهندسی، دانشگاه فردوسی مشهد.

2 دانشکده مهندسی، دانشگاه فردوسی مشهد

چکیده

 در قرن حاضر استفاده از فرآورده های مختلف نفت و سوخت های فسیلی به عنوان جزء غیرقابل تفکیک از صنعت و پیشرفت‌های بشری بوده است. آنچه امروز به عنوان یک دغدغه مهم در کنار استفاده از این فرآورده‌ها مطرح است، انتشار غیرقابل کنترل آنها در قسمت‌‌های مختلف مانند استحصال، فرآوری، انتقال و استفاده است. سایر مشکلات استفاده از این فراورده ها، آلودگی‌های زیست محیطی و بوجود آوردن خاک‌های مسئله دار آلوده در حوزه مهندسی ژئوتکنیک است. راه کار‌های زیادی برای حل جداگانه این مشکلات بررسی و ارائه شده است؛ در پژوهش حاضر استفاده از روش بهسازی میکروبی MICp ( Microbiologically induced calcium carbonate precipitation) به عنوان راه حلی برای بهپالایی خاک‌های آلوده و بهبود ظرفیت باربری کاهش یافته آن با دو فرآورده نفتی گازوئیل و روغن موتور ارائه شده است. باکتری مورد استفاده در این فرآیند Sporsarcina pasteuri بوده که بصورت فلوکه (flocculate) باکتری به خاک آلوده اضافه شده و سپس طی دو مرحله ارزیابی بهپالایی (با استفاده از نتایج کروماتوگرافی) و بهسازی ژئوتکنیکی (با استفاده از نتایج آزمون برش مستقیم و نفوذپذیری) انجام شد. با کمک آنالیز FTIR (Fourier-transform infrared spectroscopy) و بررسی نمودارهای کروماتوگرافی، کاهش پیک های اجزای شناسایی شده در نمونه تیمار شده نسبت به نمونه استاندارد تهیه شده از گازوئیل یا روغن موتور ملاحظه شدند. از طرفی بهبود خواص ژئوتکنیکی خاک‌های آلوده از مهمترین اثرات ملاحظه شده در نمونه‌های تیمار شده بود.

کلیدواژه‌ها


عنوان مقاله [English]

An Investigation into the Capability of Sporsarcina Pasteuri on Improvement and Refinement of Contaminated Hydrocarbon Soils

نویسندگان [English]

  • Mohammad Taghi Bolouri Bazaz 1
  • J. Bolouri Bazzaz 2
  • Seyyed Mohsen Karrabi 1
1 Civil Engineering Department, Ferdowsi University of Mashhad, Mashhd, Iran.
2 Civil Engineering Department, Ferdowsi University of Mashhad, Mashhd, Iran.
چکیده [English]

In the present century, the use of various petroleum products and fossil fuels has been an integral part of industry and human progress. Nowadays the major concern, in addition to the use of petroleum products, is their uncontrolled diffusion in various parts such as extraction, processing, transfer and use. The other problem with the utilization of these products has arisen in the field of geotechnical engineering includes environmental pollution and the creation of problematic contaminated soils. Many solutions to these problems have been investigated and presented separately. In the present study, the microbiologically induced calcium carbonate precipitation (MICP) method, as a solution to purify contaminated soils and to improve its reduced bearing capacity with two petroleum products, diesel and engine oil, has been proposed. The bacterium used in this process was Sporsarcina pasteuri, which was added to the contaminated soil as a flocculate bacterium. In two stages; purification evaluation (using chromatographic results) and geotechnical improvement (using direct shear and permeability test results) were performed. With the aid of FTIR (Fourier-transform infrared spectroscopy) analysis and chromatographic diagrams, a reduction of peaks of the identified components in the treated sample in comparison to the standard sample (prepared from diesel or engine oil) was observed. On the other hand, improving the geotechnical properties of contaminated soils was one of the most important effects observed in the treated samples.

کلیدواژه‌ها [English]

  • Environmental pollution
  • Improvement
  • Refinement
  • Sporsarcina pasteuri
  • Chromatography and FTIR
  1. Cai, B., Ma, J., Yan, G., Dai, X., Li, M., Guo, S., "Comparison of phytoremediation, bioaugmentation and natural attenuation for remediating saline soil contaminated by heavy crude oil", Biochemical engineering journal, 112, pp. 170-177, (2016).
  2. Sima, N. A. K., Ebadi, A., Reiahisamani, N., Rasekh, B., "Bio-based remediation of petroleum-contaminated saline soils: Challenges", the current state-of-the-art and future prospects. Journal of environmental management, 250, 109476, (2019).
  3. Li, X., Wang, X., Wan, L., Zhang, Y., Li, N., Li, D., Zhou, Q., "Enhanced biodegradation of aged petroleum hydrocarbons in soils by glucose addition in microbial fuel cells", Journal of Chemical Technology & Biotechnology, Vol. 91(1), pp. 267-275, (2016).
  4. Alexander, M., "Biodegradation and Bioremediation. Academic Press San Diego CA. Biodegradation and bioremediation", Elsevier Puclication, Academic Press, San Diego CA, (1999).
  5. Rittmann, B. E., McCarty, P. L., "Environmental Biotechnology: Principles and Applications", Tata McGraw-Hill Education, (2012).
  6. Khan, A. G., "Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation", Journal of trace Elements in Medicine and Biology, Vol. 18(4), pp. 355-364, (2005).
  7. Hu, G., Li, J., Zeng, G., "Recent development in the treatment of oily sludge from petroleum industry: a review", Journal of hazardous materials, Vol. 261, pp. 470-490, (2013).
  8. Abbasian, F., Lockington, R., Mallavarapu, M., Naidu, R., "A comprehensive review of aliphatic hydrocarbon biodegradation by bacteria", Applied biochemistry and biotechnology, Vol. 176(3), pp. 670-699, (2015).
  9. Ladygina, N., Dedyukhina, E. G., Vainshtein, M. B., "A review on microbial synthesis of hydrocarbons”, Process Biochemistry, Vol. 41(5), pp. 1001-1014, (2006).
  10. Nasr, A. M., "Uplift behavior of vertical piles embedded in oil-contaminated sand", Journal of Geotechnical and Geoenvironmental Engineering, Vol. 139(1), pp. 162-174, (2012).
  11. Huang, Y., Wang, L., "Experimental studies on nanomaterials for soil improvement: a review", Environmental Earth Sciences, Vol. 75(6), pp. 497, (2016).
  12. Tabarsa, A., Latifi, N., Meehan, C. L., Manahiloh, K. N., "Laboratory investigation and field evaluation of loess improvement using nanoclay–A sustainable material for construction", Construction and Building Materials, Vol. 158, pp. 454-463, (2018).
  13. DeJong, J. T., Fritzges, M. B., Nüsslein, K., "Microbially induced cementation to control sand response to undrained shear", Journal of Geotechnical and Geoenvironmental Engineering, Vol. 132(11), pp. 1381-1392, (2006).
  14. Whiffin, V. S., van Paassen, L. A., Harkes, M. P., "Microbial carbonate precipitation as a soil improvement technique", Geomicrobiology Journal, Vol. 24(5), pp. 417-423, (2007).
  15. Dejong, J. T., Soga, K., Kavazanjian, E., Burns, S., Van Paassen, L. A., Al Qabany, A., Chen, C. Y., "Biogeochemical processes and geotechnical applications: progress", opportunities and challenges. Geotechnique, Vol. 63, pp. 287-301, (2013).
  16. Kogbara, R. B., "A review of the mechanical and leaching performance of stabilized/solidified contaminated soils", Environmental Reviews, Vol. 22(1), pp. 66-86, (2013).
  17. Akinwumi, I. I., Booth, C., Diwa, D., Mills, P., "Cement stabilisation of crude-oil-contaminated soil", Proceedings of the ICE-Geotechnical Engineering, Vol. 169(4), pp. 336-345, (2016).
  18. George, S., Aswathy, E. A., Sabu, B., Krishnaprabha, N. P., George, M., "Stabilization of Diesel Oil Contaminated Soil Using Fly Ash", International Journal of Civil and Structural Engineering Research, Vol. 2(2), pp.118-123, (2015).
  19. Nasr, A. M., "Utilisation of oil-contaminated sand stabilised with cement kiln dust in the construction of rural roads", International Journal of Pavement Engineering, Vol. 15(10), pp. 889-905, (2014).
  20. Ghasemzadeh, H., Tabaiyan, M., "The Effect of Diesel Fuel Pollution on the Efficiency of Soil Stabilization Method", Geotechnical and Geological Engineering, Vol. 35(1), pp. 475-484, (2017).
  21. Ghobadi, M. H., Abdilor, Y., Babazadeh, R., "Stabilization of clay soils using lime and effect of pH variations on shear strength parameters" Bulletin of Engineering Geology and the Environment, Vol. 73(2), pp. 611-619, (2014).
  22. Estabragh, A. R., Kholoosi, M., Ghaziani, F., Javadi, A. A., "Mechanical and Leaching Behavior of a Stabilized and Solidified Anthracene-Contaminated Soil", Journal of Environmental Engineering, Vol. 144(2), pp. 04017098, (2017).
  23. Stocks-Fischer, S., Galinat, J. K., Bang, S. S., "Microbiological precipitation of CaCO3", Soil Biology and Biochemistry, Vol. 31(11), pp. 1563-1571, (1999).
  24. Ramakrishnan, V., Ramesh, K. P., & Bang, S. S., "Bacterial concrete", In Smart Materials, Vol. 4234, pp. 168-176, International Society for Optics and Photonics, April, (2001).
  25. DeJong, J. T., Mortensen, B. M., Martinez, B. C., Nelson, D. C., "Bio-mediated soil improvement", Ecological Engineering, Vol. 36(2), pp. 197-210, (2010).
  26. Ferris, F. G., Stehmeier, L. G., Kantzas, A., Mourits, F. M., "Bacteriogenic mineral plugging", Journal of Canadian Petroleum Technology, Vol. 36(09), (1997).
  27. Mortensen, B. M., Haber, M. J., DeJong, J. T., Caslake, L. F., Nelson, D. C., "Effects of environmental factors on microbial induced calcium carbonate precipitation", Journal of applied microbiology, Vol. 111(2), pp. 338-349, (2011).
  28. Abduolrahimi, S., Ghorbanzadeh, N., Forghani, A., Farhangi, M. B., "Bioremediation of cadmium in contaminated sandy soil by microbially induced calcite precipitation", Journal of Water and Soil, Vol. 32(2), pp.343-357, (2018).
  29. Kang, C. H., Han, S. H., Shin, Y., Oh, S. J., So, J. S., "Bioremediation of Cd by Microbially Induced Calcite Precipitation", Applied Biochemistry and Biotechnology, Vol. 172(4), pp. 1929-1937, (2014).
  30. Cheng, L., Shahin, M. A., "Stabilisation of oil-contaminated soils using microbially induced calcite crystals by bacterial flocs", Géotechnique Letters, Vol. 7(2), pp. 146-151, (2017).
  31. Cheng, L., Cord-Ruwisch, R., "In situ soil cementation with ureolytic bacteria by surface percolation", Ecological Engineering, Vol. 42, pp. 64-72, (2012).

32.   بلوری بزاز، محمدتقی، بلوری بزاز، جعفر و کرابی، سید محسن، "مقایسه‌ی تاثیر نوع محیط کشت باکتری Sporosarcina Pasteurii بر میزان و نوع رسوبات کربنات کلسیم در جهت بهسازی خاک‌های دانه‌ای"، نشریه مهندسی عمران امیرکبیر، دوره 53، شماره 7، صفحه 18، (1400).‎

  1. Bolouri-Bazaz, M. T., Bolouri-Bazaz, J., "Effect of Hydrocarbon Contamination on Biostabilization of Soil Contaminated with Motor Oil and Gasoline", Geomicrobiology Journal, 38(6), pp. 467-481, (2021).
  2. Bauer, A. W., "Kirby, MM, Sherris, JC and Turck, M. Antibiotic susceptibility testing by a standard method", American Journal of Clinical Pathology, Vol. 45, pp. 493-496, (1966).
  3. Adeniji, A. O., Okoh, O. O., Okoh, A. I., "Analytical methods for the determination of the distribution of total petroleum hydrocarbons in the water and sediment of aquatic systems: A review", Journal of Chemistry, (2017).
  4. Enviromental Protection Agency (EPA) of United State, "Treatment technologies for site cleanup: Annual Status Report", Office of Solid Waste and Emergency Response. 10th Ed., USA, (2001).
  5. Lai, C. C., Huang, Y. C., Wei, Y. H., Chang, J. S., "Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil", Journal of hazardous materials, Vol. 167(1-3), pp. 609-614, (2009).
  6. Vasudevan, N., Rajaram, P., "Bioremediation of oil sludge-contaminated soil", Environment International, Vol. 26(5-6), pp. 409-411, (2001).
  7. Xue, J., Yu, Y., Bai, Y., Wang, L., Wu, Y., "Marine oil-degrading microorganisms and biodegradation process of petroleum hydrocarbon in marine environments: a review", Current microbiology, Vol. 71(2), pp. 220-228, (2015).
  8. Luo, Q., Hou, D., Jiang, D., & Chen, W., "Bioremediation of marine oil spills by immobilized oil-degrading bacteria and nutrition emulsion", Biodegradation Journal, (Springer), Vol. 32, pp. 165-177, (2021).

 

CAPTCHA Image