مدلسازی تأثیر دما و ضخامت آسفالت بر چقرمگی شکست تحت مُد 1 خالص

نوع مقاله : پژوهشی

نویسندگان

1 دانشگه آزاد اسلامی

2 دانشگاه آزاد اسلامی واحد نوشهر

چکیده

با توجّه به افزایش تراکم وسایل نقلیه و به دنبال آن نیاز به احداث راه­های جدید، سالانه هزینه هنگفتی صرف طراحی و اجرای روسازی­های آسفالتی می­گردد. همچنین عوامل متعدّدی از قبیل شرایط اقلیمی و وضعیت ترافیکی گوناگون جاده­ها، به‌مرورزمان باعث ایجاد ترک­هایی در سطح جاده می­گردند که هزینه­هایی نیز صرف تعمیر و نگهداری آن می­شود. ترک حرارتی یکی از حالت­های شدید خرابی در مناطق سرد است. انتشار و رشد بیشتر در چنین ترک­هایی ممکن است به دلیل تنش­های کششی حرارتی ناشی از نوسانات دما رخ دهد که می­تواند منجر به بروز شکست در روسازی آسفالتی تحت مود I خالص گردد. در این تحقیق سعی شده است که با تعیین چقرمگی شکست ( ) به‌عنوان یک عامل اصلی جهت تخمین ظرفیت باربری روسازی­های ترک‌خورده در برابر رشد ترک به بررسی مقاومت مخلوط­های آسفالتی تحت مود I در دماهای پایین پرداخته شود. بدین منظور پس از ساخت مخلوط­های آسفالتی با قیر 70-60، نمونه­های نیم­دیسک با ترک مؤثر به عمق 23 میلی‌متر در سه ضخامت 35، 50 و 65 میلی‌متر تهیّه گردید. سپس با انجام آزمایش شکست در سه دمای زیر صفر (5- 15- و 25- درجۀ سانتی‌گراد) و محاسبه میزان چقرمگی شکست با استفاده از بار بحرانی شکست، اطلاعات به­دست­آمده مورد ارزیابی قرار گرفت. نتایج کلّی بیانگر آن بود که افزایش ضخامت نمونه­ها و همچنین کاهش دما باعث افزایش در میزان چقرمگی شکست می­گردد. درنهایت با استفاده از نرم­افزار متلب، مدلی جهت تخمین مقدار چقرمگی شکست آسفالت بر اساس دو پارامتر دما و ضخامت نمونه ارائه گردید. مشخص شد که مدل ارائه ­شده می­تواند مقدار چقرمگی شکست در مخلوط آسفالتی تهیّه ­شده در تحقیق حاضر را در محدودۀ دمایی و ضخامت­های مورد مطالعه، به­خوبی پیش­بینی نماید.

کلیدواژه‌ها


عنوان مقاله [English]

Developing a Model for the Effect of Temperature and Thickness of Asphalt Mixture on Fracture Toughness under Pure Mode I

نویسنده [English]

  • sina Ahmadipour 2
2 -
چکیده [English]

A huge amount of money is spent every year on designing and constructing of asphalt pavements due to an increase in the number of vehicles and, consequently, a higher demand for constructions of new roads. In addition, overtime, different factors such as severe climates and roads traffic conditions create cracks on the road surface that also require spending money on roads maintenance. Thermal cracking is one of the major distress types in the cold regions. Further propagation of such cracks may occur because of tensile thermal stresses induced by temperature fluctuations which can result in pure mode I fracture mechanism in the asphalt pavement. This study aims to determine fracture toughness ( ) as a fundamental parameter for estimating the load bearing capacity of cracked pavements against crack propagation under mode I cracking in low temperatures. To this end, the asphalt mixtures were manufactured with AC 60/70 bitumen. Semi-circular bending (SCB) specimens with effective crack length (a=23 mm) have been prepared in three thickness (35, 50 and 65 mm). We collected data with conducting the fracture tests at three subzero temperatures (-5°C, -15°C and -25°C) and calculating the fracture toughness values using fracture loads. The results indicated that, in general, increasing speciments thickness and decreasing temperature increase fracture toughness. Finally, using MATLAB software, a model was developed to estimate the asphalt fracture toughness according to the two parameters of temperature and specimens thickness. It was determined that the proposed model can predict the values of fracture toughness in asphalt mixtures prepared on present study at the temperature and thickness range of the research.

کلیدواژه‌ها [English]

  • Asphalt Pavement
  • Asphalt Fracture
  • fracture toughness
  • Mode I Fracture
  • Pure Tensile
نشریه شماره 234، سازمان مدیریت و برنامه‌ریزی کشور. ”آیین‌نامه روسازی آسفالتی راه‌های ایران“. وزارت راه و شهرسازی، موسسه قیر و آسفالت ایران، پژوهشکده حمل‌ونقل، تجدید نظر اوّل، (1390).
2. Xie J., Xiao Y., Wu Sh. and Huang J., "Research on fracture characteristic of gneiss prepared asphalt mixture with direct tensile test", Construction and Building Materials, Vol. 28, pp. 476-481, (2012).
3. Liu J., Zhao Sh., Li L., Li P. and Saboundjian S., "Low temperature cracking analysis of asphalt binders and mixtures", Cold Regions Science and Technology, Vol. 141, pp. 78-85, (2017).
4. Kim K.W. and El Hussein M., "Variation of fracture toughness of asphalt concrete under low temperatures", Construction and Building Materials, Vol. 11, No. 7-8, pp. 403-411, (1997).
5. Grant T.P., "DETERMINATION OF ASPHALT MIXTURE HEALING RATE USING THE SUPERPAVE INDIRECT TENSILE TEST", thesis presented to the graduate school of the university of florida in partial fulfillment of the requirements for the degree of master of engineering, (2001).
6. Li X-J. and Marasteanu MO., "Using Semi Circular Bending Test to Evaluate Low Temperature Fracture Resistance for Asphalt Concrete", Experimental Mechanics, Vol. 50, pp. 867-876, (2010).
7. Aliha M.R.M. and Fattahi Amirdehi H.R., "Fracture toughness prediction using Weibull statistical method for asphalt mixtures containing different air void contents", Fatigue & Fracture of Engineering Materials & Structures, Vol. 40, No. 1, pp. 1-14, (2016).
8. Ameri M., Mansourian A., Pirmohammad S., Aliha M.R.M. and Ayatollahi M.R., "Mixed mode fracture resistance of asphalt concrete mixtures", Engineering Fracture Mechanics, Vol. 93, pp. 153-167, (2012).
9. Some´ S.C., Fredj M.A. and Nguyen M-L., "Multi-parametric characterization of mode I fracture toughness of asphalt concrete: Influence of void and RA contents, binder and aggregate types", International Journal of Pavement Research and Technology, Vol. 11, No. 3, pp. 274-284, (2018).
10. بهبهانی، ح.، علیها، م. ر. م.، آقاجانی شهریور، س. و آسایش زارچی، ح. ”بررسی مقاومت شکست مخلوط‌های آسفالتی اصلاح‌شده با استفاده از آزمایش نیم‌دیسک تحت بار خمشی“. مهندسی عمران شریف، دوره 2–31، شماره 1/3، یادداشت فنی، 135-129، (1394).
11. علیها، م. ر. م.، رضایی‌فر، م. ح. و فضائلی، ح. ”بررسی آزمایشگاهی چقرمگی شکست بتن‌های آسفالتی تحت مودهای ترکیبی کششی-برشی“. مجله علمی-پژوهشی، عمران مدرس، دوره پانزدهم، شماره یک، (1394).
12. Im S. and Ban H., "Characterization of mode-I and mode-II fracture properties of fine aggregate matrix using a semicircular specimen geometry", Construction and Building Materials, Vol. 52, pp. 413-421, (2014).
13. Champion L., Gerard J-F., Planche J-P., Martin D. and Anderson D., "Low temperature fracture properties of polymer-modified asphalts relationships with the morphology", Journal of Materials Science, Vol. 36, No. 2, pp. 451-460, (2001).
14. Mull M.A., Stuart K. and Yehia A., "Fracture resistance characterization of chemically modified crumb rubber asphalt pavement", Journal of Materials Science, Vol. 37, No. 3, pp. 557-566, (2002).
15. فخری، م. و کریمی ابیانه، پ. ”بررسی نحوۀ گسترش ترک‌های خستگی در روسازی آسفالتی در اثر تغییر دما، با استفاده از فرضیه مکانیک شکست“ مهندسی زیرساخت‌های حمل‌ونقل، سال اوّل، شماره دوم، 62-55، (1394).
16. Aliha M.R.M., Behbahani H., Fazaeli H. and Rezaifar M.H., "Experimental study on mode I fracture toughness of different asphalt mixtures", Scientia Iranica A, Vol. 22, No. 1, pp. 120-130, (2015).
17. گلچین، ب. و صفایی، ر. ”تأثیر الیاف کربن بر مقاومت شکست مخلوط‌های آسفالتی با استفاده از اصول مکانیک شکست الاستیک خطی“ مهندسی زیرساخت‌های حمل‌ونقل، سال چهارم، شماره دوم، پیاپی چهاردهم، 92-77، (1397).
18. جعفری حقیقت‌پور، پ.، کی‌منش، م. ر. و علیها، م. ر. م. ”بررسی مشخصات مخلوط‌های آسفالتی مقاوم در برابر شکست مود III خالص“ مهندسی زیرساخت‌های حمل‌ونقل، سال چهارم، شماره اوّل، پیاپی سیزدهم، 85-71، (1397).
19. Kim K.W., Kweon S.J., Doh Y.S. and Park T-S., "Fracture toughness of polymer-modified asphalt concrete at low temperatures", Can. J. Civ. Eng., Vol. 30, No. 2, pp. 406-413, (2003).
20. Razmi M. and Mirsayar M.M., "Fracture resistance of asphalt concrete modified with crumb rubber at low temperatures", International Journal of Pavement Research and Technology, Vol. 11, No. 3, pp. 265-273, (2018).
21. Aliha M. R. M., HaghighatPour P. J. and Keymanesh M. R., "Evaluating Mode I Fracture Resistance in Asphalt Mixtures Using Edge Notched Disc Bend ENDB Specimen with Different Geometrical and Environmental Conditions", Engineering Fracture Mechanics, Vol. 190, pp. 245-258, (2018).
22. Fakhri M., Haghighat Kharrazi E. and Aliha M. R. M., "Mixed mode tensile - in plane shear fracture energy determination for hot mix asphalt mixtures under intermediate temperature conditions", Engineering Fracture Mechanics, Vol. 192, pp. 98-113, (2018).
23. Ayatollahi M.R. and Aliha M. R. M., "Wide range data for crack tip parameters in two disc-type specimens under mixed mode loading", Computational Materials Science, Vol. 38, No. 4, pp. 660-670, (2007).
24. Mansourian A., Razmi A. and Razavi M., "Evaluation of fracture resistance of warm mix asphalt containing jute fibers", Construction and Building Materials, Vol. 117, pp. 37-46, (2016).
25. Ren J. and Sun L., "Characterizing Air Void Effect on Fracture of Asphalt Concrete at Low-temperature using Discrete Element Method", Engineering Fracture Mechanics, Vol. 170, pp. 23-43, (2017).
26. Ziari H., Aliha M.R.M., Moniri A. and Saghafi Y., "Crack resistance of hot mix asphalt containing different percentages of reclaimed asphalt pavement and glass fiber", Construction and Building Materials, Vol. 230, (2020).
27. Some´ S.C., Feeser A. and Pavoine A., "Numerical and experimental investigation of mode I cracking of asphalt concrete using semi-circular bending test", Construction and Building Materials, Vol. 169, pp. 34-46, (2018).
CAPTCHA Image