تأثیر میکروسیلیس و نانوسیلیس بر خواص مکانیکی بتن سبک الیافی

نوع مقاله : یادداشت پژوهشی

نویسندگان

1 گیلان

2 غیرانتفاعی دیلمان لاهیجان

چکیده

بتن سبک به‌واسطه ویژگی‌های خاص خود ازجمله سبک‌سازی سازه‌ها حائز اهمیت می‌باشد. این مقاله تأثیر میکروسیلیس و نانوسیلیس را روی خواص ‏مکانیکی بتن الیافی حاوی سبکدانه اسکوریا مورد ارزیابی قرار می‌دهد. میکروسلیس و نانوسیلیس در مقادیر مختلف جایگزین وزنی سیمان شده است. مقدار مصرف الیاف فولادی و پلی‌پروپیلن با نسبت‌های حجمی و طول به قطر مختلف، متفاوت می‌باشد. در این مطالعه هفده طرح مختلف تحت ‏آزمایش‌های مقاومت مکانیکی و جذب آب و وزن مخصوص قرار گرفتند که نتایج به‌دست‌آمده درصد جایگزینی بهینه میکروسیلیس و نانوسیلیس را به ترتیب ‏‏10 و 3 درصد و تأثیر الیاف فولادی را بهتر از الیاف پلی‌پروپیلن بر خواص مکانیکی بتن سبک نشان می‌دهد.‏

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Silica Fume and Nano Silica on Mechanical Properties of Fiber-Reinforced Lightweight Concrete

نویسندگان [English]

  • Seyed Hosein ‎ Ghasemzadeh Mousavinejad ‎ 1
  • yasser ghorbani 2
1 University of Guilan ‎‏ ‏‎ ‎
2 The nonprofit Institute of Deylaman Lahijan
چکیده [English]

Lightweight concrete has significant importance due to its special features including weight reduction of structures.This article aims to study ‎the effect of silica fume (SF) and ‎nano silica (Na) on mechanical properties of fiber reinforced concrete containing lightweight scoria aggregates. SF ‎and Na are replaced by different amounts of cement weight. The used amounts of Steel and ‎polypropylene fibers having different length to ‎diameter ratios are different.‎ For this study, seventeen different lightweight mixtures ‎were made and tested for mechanical strengths, water absorption and density. ‎Results show that optimized replacement ‎amount of SF and Na is 10% and 3%, respectively. Steel fiber in comparison to ‎Polypropylene fiber had‎ better effect on mechanical characteristics of lightweight concrete.‎

کلیدواژه‌ها [English]

  • Lightweight Scoria
  • Silica fume
  • Nano Silica
  • Steel and Polypropylene Fibers
  • Mechanical properties
‎برگی، خسرو، " اصول مهندسی زلزله"، انتشارات دانشگاه تهران، (1380)‏.
‎2. Babu, D. S., Babu, K. G., Tiong-Huan, W., "Effect of polystyrene aggregate size on strength and moisture ‎migration characteristics of lightweight concrete", Cement & Concrete Composites, 28, 520-527, (2006).
‎3. Demirboga, R., Orung, I., Gul, R.,"Effects of expanded perlite aggregate and mineral admixtures on the ‎compressive strength of low-density concretes", Cement and Concrete Research 31:1627–32, (2001).
‎4. Al-Khaiat, H., Haque, M. N., "Effect of initial curing on early strength and physical properties of ‎lightweight concrete", Cement and Concrete Research 28 (6) 859– 866, (1998).‎
5. Demirdag, S., Gunduz, L., "Strength properties of volcanic slag aggregate lightweight concrete for high performance masonry units", Construction and Building Materials 22, 135–142, (2008).
6. BS EN 206:2013, "Concrete - Specification, performance, production and conformity (English version). Brussels", European Commitiee for Standardization, (2013).
‎7. Dotto, J. M. R., et al., "Influence of silica fume addition on concretes physical properties and on ‎corrosion ‎ ehavior of reinforcement bars", cement and concrete composites 26(1): pp 31-39, (2004).‎
‎8. Shannag, M. J., "High strength concrete containing natural pozzolan and silica fume", Cement & ‎Concrete Composites 22 399-406, (2000).
‎‎‏‎‏9‏‎.‎‏ مهرآوران، محسن.، سهرابی، ‎محمدرضا.‎‎، "بهبود‎ ‎خواص ‎بتن ‎حاوی‎ ‎پوزولان‎ ‎تفتان‎ ‎با‎ ‎استفاده‎ ‎از‎ ‎نانوسیلیس"، پنجمین کنگره ملی مهندسی ‏عمران، (1389).
‎10. Qing, Y., Zenan, Z., Deyu, K., Rongshen, C., "Influence of nano-SiO2 addition on properties of ‎hardened cement paste as compared with silica fume", Construction and Building Materials 21, 539–‎‎545, (2007).‎
‎‎‏‎11. Li, H., Zhang, M-H., Ou, J-P., "Abrasion resistance of concrete containing nano-particles for ‎pavement", Wear 260, 1262–1266, (2006).‎
‎‎‏‎12‎‏‎. Ji, T., Mirzayee, A., Zangeneh-Madar, Z., Zangeneh-Madar, E., "Preliminary study on water ‎infiltration of concrete containing nano-SiO2 and silicone",‎ 8th International ‎Congress, on Civil ‎Engineering, May 11-13, Shiraz University, Shiraz, Iran‎, (2009).‎
‎13. Gesog˘lu, M., Guneyisi, E., Alzeebaree, R., Mermerdas, K.," Effect of silica fume and steel fiber on the ‎mechanical properties of the concretes produced with cold bonded fly ash aggregates", Construction and Building ‎Materials 40, 982–990, ‎(2013).
‎‎‏‎14. Kılıc, A., Atis, C. D., Yas¸ E., Özcan, F.," High-strength lightweight concrete made with scoria aggregate ‎containing mineral admixtures", Cement and Concrete Research 33, 1595–1599, ‎(2003).
‎‎‏‎15. Yazıcı, S., Inan, G., Tabak, V., "Effect of aspect ratio and volume fraction of steel fiber on the ‎mechanical properties of SFRC", Construction and Building Materials PP1250–1253, (2007).
‎‎‎‏16‏‎ .‎ ماهوتیان، مهرداد. بهرادی یکتا، سجاد، " تأثیر الیاف فولادی و پلی‌پروپیلن بر مشخصات مکانیکی بتن سبکدانه حاوی لیکا و پومیس "، اولین کنفرانس ملی بتن ‏سبک،‎ ‎دانشگاه تهران، (1390).
‎‎17. Valipour, M., Pargar, F., Shekarchi, M., Khani, S., "Comparing a natural pozzolan, ‎zeolite, to metakaolin ‎and silica fume in terms of their effect on the durability characteristics ‎of concrete: A laboratory study", ‎Construction and Building Materials 41, 879–888, (2013).‎
‎18. Mazloom, M., Ramezanianpour, A. A., Brooks, J. J., "Effect of silica fume on ‎mechanical properties of ‎high-strength concrete", Cement& Concrete Composites 26, 347–357, (2004).
‎19. Ahmadi, B., & Shekarchi, M., "Use of natural zeolite as a supplementary ‎cementitious material", Cement ‎& Concrete Composites 32, 134–141, (2010).
20. Jo, B. W., Kim, C. H., Tae, G. H., Park, J. B., "Characteristics of cement mortar with nano-SiO2 particles", Construction and Building Materials 21,1351–1355, (2007).
21. Behfarnia, K., Salemi, N., "The effects of nano-silica and nano-alumina on frost resistance of normal Concrete", Construction and Building Materials 48, 580–584, (2013).
‎‎22. Ali Libre, N., Shekarchi, M., Mahoutian, M., Soroushian, P., "Mechanical ‎properties of hybrid fiber ‎reinforced lightweight aggregate concrete made with natural ‎pumice", Construction and Building Materials 25, ‎‎2458–2464, (2011).‎
‎‎‏23‏‎.‎ حسینعلی‎ ‎بیگی، مرتضی، پور‎ ‎نیک‌بین، محمد، باباجانی، میلاد،" بررسی تأثیر الیاف‌های مختلف بر روی خصوصیات مکانیکی بتن خود متراکم سبک" ، اولین ‏کنفرانس ملی مهندسی و مدیریت زیرساخت‌ها، دانشگاه تهران، (1388).
‎‎24. Rossignolo, J. A., Agnesini, M. V. C., "Durabiliti of Polymer-modified lightweight ‎aggregate concrete", ‎Cement & Concrete Composites 26, 375-380, (2004).
‎25. CEB-FIP," Diagnosis and assessment of concrete structures – state of the art report", ‎CEB Bull 192, 83–5, (1989).
‎26. Kayali, O., Haque, M. N., Zhu, B., "Drying shrinkage of fibre-reinforced ‎lightweight aggregate concrete ‎containing fly ash", Cement and Concrete Research 29, 1835–‎‎1840, (1999).‎
‎27. Nili, M., Afroughsabet, V., "The effects of silica fume and polypropylene fibers on the impact resistance ‎and mechanical properties of concrete", Construction and Building Materials 24, 927–933, (2010).
‎28. Cakır, Ö., Sofyanl, Ö.Ö., "Influence of silica fume on mechanical and physical ‎properties of recycled ‎aggregate concrete", Housing and Building National Research Center, (2014).
29. Shekari, A. H., Razzaghi, M. S., "Influence of nano particles on durability and mechanical properties of high performance concrete", Procedia Engineering 14, 3036–3041, (2011).
30. Amin, M., Abu el-hassan, K.,"Effect of using different types of nano materials on mechanical properties of high strength concrete", Construction and Building Materials 80,116–124, (2015).
‎31. Mukharjee, B. B., V. Barai, S., "Influence of Nano-Silica on the properties of recycled aggregate concrete", Construction and Building Materials 55, 29–37, (2014).
‎‎‏‎32. Bhanjaa, S., Sengupta, B., "Influence of silica fume on the tensile strength of ‎concrete", Cement and ‎Concrete Research 35, 743–747, (2005).‎
33. Nazari, A., Riahi, Sh.,"The effects of SiO2 nano particles on physical and mechanical properties of high strength compacting concrete", Composites: Part B 42, 570–578, (2011).
CAPTCHA Image