رفتار لرزه‌ای قاب‌های خمشی فولادی با مهار زانویی

نوع مقاله : پژوهشی

نویسندگان

دانشگاه ملایر

چکیده

قاب‌های خمشی فولادی هرچند شکل‌پذیری خوبی دارند ولی از لحاظ سختی و کنترل جابه‌جایی‌ها دارای محدودیت‌ هستند. اخیراً سیستمی تحت عنوان قاب خمشی با مهارزانویی معرفی شده است که با اضافه کردن عضو‌های زانویی به قاب خمشی معمولی در محاذات اتصالات خمشی به‌عنوان فیوز سازه‌ای، رفتار لرزه‌ای قاب خمشی اولیه بهبود می‌یابد. در تحقیق حاضر، رفتار لرزه‌ای قاب‌های خمشی فولادی معمولی با مهار زانویی برای سه قاب دوبعدی 3، 6 و 10 طبقه با تعداد دهانه‌های مختلف، بااستفاده از تحلیل دینامیکی تاریخچه‌زمانی و تحلیل استاتیکی غیرخطی بررسی شده است. نتایج به‌دست‌آمده نشان می‌دهد که مقادیر ضریب اضافه‌مقاومت‌ و به‌تبع آن ضریب رفتار این قبیل قاب‌ها به‌میزان قابل‌توجهی بیش از مقادیر مربوطه در قاب خمشی است. همچنین، ملاحظه گردید که نیاز نیروی محوری ستون‌های قابهای زانویی مورد بررسی -جز در طبقات آخر- کمتر از میزان پیشنهادی آییننامه برای قابهای خمشی است.

کلیدواژه‌ها


عنوان مقاله [English]

Seismic Behavior of Knee-Braced Steel Moment Frames

نویسندگان [English]

  • Amin Mohebkhah
  • Alireza Bazvand
Malayer University
چکیده [English]

Moment-resisting steel frames (MRSFs) have high ductility, however, suffer from low lateral stiffness and large lateral drifts. Recently, a new LFRS called knee-braced moment frame (KBMF) has been introduced in the literature in which the seismic behavior of an ordinary moment frame is improved using some knee elements as structural ductile fuses in the vicinity of beam-to-column moment connections. In this research, seismic behavior of some 3, 6 and 10 stories KBMFs with different span numbers are studied using nonlinear static and dynamic time-history analyses. The results show that the overstrength factor as well as behavior factor of KBMFs are considerably larger than the corresponding factors for MRSFs. Furthermore, it was observed that the column axial demands in KBMFs –except for the top stories- are smaller than those proposed in the Seismic Provisions for MRSFs.

کلیدواژه‌ها [English]

  • Steel Frame
  • Knee Bracing
  • Time-history dynamic analysis
  • nonlinear static analysis
  • Seismic Parameters
1. ازهری م. و میرقادری ر.، «طراحی سازه‌های فولادی (جلد چهارم- مباحث طراحی لرزه‌ای)»، انتشارات ارکان دانش، اصفهان (1390).
2. Taranath, Bungale S., "Wind and Earthquake Resistant Buildings", Marcel Dekker, New York, USA, (2004).
3. Aristizabal-Ochoa, J.D., "Disposable Knee Bracing: Improvement Seismic Design of Steel Frames", Struct. Engng, ASCE, Vol. 112, No. 7, pp.1544–1552, (1986).
4. Balendra, T., Yu, C.H. and Lee, F.L., "An Economical Structural System for Wind and Earthquake Loads", Eng. Struct, Vol. 23, Issue 5, pp. 491–501, (2001).
5. Huang Zhen, Li, Qing-song, Chen, Long-zhu, "Elastoplastic Analysis of Knee Bracing Frame", Journal of Zhejiang Univ SCI, 6A(8):784-789, (2005).
6. Leelataviwat, S., Suksan, B., Srechai, J. and P.S Warnitchai, P.S., "Seismic Design and Behavior of Ductile Knee-Braced Moment Frames", Journal of structural engineering, Vol. 137, No. 5, pp. 579-588, (2011).
7. Hsu H.L., Juang, J.L. and Chou, C.H., "Exprimental Evaluation on the Seismic Performance of Steel Knee Braced Frame Structures whit Energy Dissipation Mechanism", steel and composite structures, Vol. 11, No. 10, pp. 127-24, (2011).
8. Asghari A. and Gandomi A.H., "Ductility Reduction Factor and Collapse Mechanism Evaluation of a New Steel Knee Braced Frame", Structure and Infrastructure Engineering, Vol. 12, No. 2, 239–255 (2016).
9. ASCE-7, "Minimum Design Loads for Buildings and Other Structures", American Society of Civil Engineers: Reston, Virginia 20191, (2010).
10. ETABS ver. 9.4.1, "Integrated Building Design Software", Computers and Structures, (2005).
11. ANSI/AISC341-10, "Seismic Provisions for Structural Steel Buildings", AISC, Chicago, Illinois, (2010).
12. American-Institute-of-Steel Construction, "Specification for Structural Steel Buildings", in ANSI/AISC 360-10, Chicago, Illinois 60601-1802, (2010).
13. بازوند، ع.، «رفتار لرزه‌ای قاب‌های خمشی فولادی با مهار زانویی»، پایاننامۀ کارشناسی ارشد، دانشکدۀ مهندسی عمران و معماری، دانشگاه ملایر، (1392).
14. SeismoStruct, v6.5, S. Antoniou, Editor, SeismoSoft Ltd. p. "A Computer Program for Static and Dynamic Nonlinear Analysis of Framed Structures", (2013).
15. Richards, P.W., "Seismic Column Demands in Ductile Braced Frames", Journal of Structural Engineering, Vol. 135, No. 1, pp. 33-41, (2009).
16. MacRae, G.A., Kimura, Y. and Roeder, C., "Effect of Column Stiffness on Braced Frame Seismic Behavior", Journal of Structural Engineering, Vol. 130, No. 3, pp. 381-391, (2004).
17. Sabelli, R., Mahin, S. and Chang, C., "Seismic Demands on Steel Braced Frame Buildings with Buckling Restrained Braces", Engineering Structures, Vol. 25, No.6, pp.655-666, (2003).
18. Uriz, P. and Mahin, S.A., "Toward Earthquake-Resistant Design of Concentrically Braced Steel-Frame Structures", PEER Report 2008/08, University of California, Berkeley: California, (2008).
19. D’Aniello, M. and Ambrosino, G.L.M., Portioli, F. and Landolfo, R., "The Effect of Different Modelling Approach on Seismic Analysis of Steel Concentric Braced Frames", Proceedings of the 15th WCEE, Lisbon, Portugal, (2012).
20. Salmanpour, A.H. and Arbabi, F., "Seismic Reliability of Concentrically Braced Steel Frames", Proceedings of the 14th World Conferance on Earthquake Engineering, WCEE, Beijing-China, (2008).
21. Mohebkhah, A. and Nasrollah Beigy, S., "Seismic Behavior of SCBFs with Reduced Braced Span", Proceedings of the 3rd National Conference on Earthquake & Structure, ACECR of Kerman University, Kerman, Iran, (2012).
22. FEMA-273, "NEHRP, Guidelines for the Seismic Rehabilitation of Buildings", Federal Emergency Management Agency, Pp. Washington, D.C., (1997).
23. M. Mahmoudi, M. Zaree, "Evaluating Response Modification Factors of Concentrically Braced Steel Frames", Journal of Constructional Steel Research, Vol. 66, Issue 10, pp. 1196-1204, (2010).
24. Kim, J. and Choi, H., "Response Modification Factors of Chevron-braced Frames", Engineering Structures, Vol. 22, No. 2, pp. 285–300, (2005).
25. FEMA-356, "Prestandard and Commentary for the Seismic Rehabilitation of Building", Washington, D.C: Federal Emergency Management Agency, Washington, D.C (2000).
26. Elnashai, A.S. and Di Sarno, L., "Fundamentals of Earthquake Engineering", John Wiley, UK, (2008).
27. Miranda, E. and Bertero, V.V., "Evaluation of Strength Reduction Factors for Earthquake-resistant Design", Earthquake Spectra, Vol. 10, No. 2, pp. 10(2):357–79, (1994).
CAPTCHA Image