بررسی شکل‌پذیری قاب‌های فولادی مهاربندی شدۀ ضربدری واقع در دو دهانۀ میانی مجاور هم

نوع مقاله : پژوهشی

نویسنده

دانشگاه صنعتی ارومیه

چکیده

در این تحقیق برای ارزیابی شکل‌پذیری قاب‌های ساختمانی ساده توأم با مهاربندهای ضربدری واقع در دو دهانۀ میانی مجاور هم، 16 قاب ساختمانی ساده توأم با مهاربندهای هم گرای معمولی و 16 قاب ساختمانی ساده توأم با مهاربندهای هم گرای ویژه مورد مطالعه قرار گرفته است. در قاب‌های مهاربندی شده ضربدری معمولی، با وجود آن که در اکثر قاب‌ها، سازه تغییرمکان هدف را تجربه نمی‌نماید، لیکن
به دلیل بالاتر بودن سطح نیروهای طراحی این نوع قاب‌ها، شکل‌پذیری مورد نیاز تأمین می‌شود. نتایج به دست آمده از این تحقیق نشان می‌دهد که ضریب رفتار پیشنهاد شده در ویرایش چهارم استاندارد 2800 ایران (5/5=R) برای مهاربندهای ضربدری ویژه منطقی‌تر از ضریب رفتار پیش‌بینی شده در آئین‌نامۀ ASCE7 (6=R) است. بر اساس نتایج این تحقیق، ضریب رفتار قاب‌های مهاربندی شدۀ ضربدری ویژه و دارای زمان تناوب محاسباتی بیش از یک ثانیه (حدوداً بالای 10 طبقه)، برابر 5 پیشنهاد می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluating the Ductility of X-braced Frames which are Braced in two Middle Adjacent Spans

نویسنده [English]

  • Abazar Asghari
Urmia University of Technology.
چکیده [English]

In this study, for evaluating ductility of ordinary concentrically braced frames (OCBFs) and special concentrically braced frames (SCBFs) which are X- braced in two adjacent middle spans, 16 steel ordinary concentrically braced frames and 16 special concentrically braced frames are studied. The results confirm that, although most of ordinary concentrically braced frames, which are X-braced, cannot experience the corresponding target displacement, but because of their high designing force level expected ductility can be obtained. Also results confirm that the response modification factor of SCBFs which is proposed by Iranian seismic design code (2800 standard forth edition), R=5.5, is more logical than ASCE's one, R=6. According to the results, the response modification factor of 5 is proposed for special concentrically braced frames, which have an analytical period of more than one second (frames more than 10 stories).

کلیدواژه‌ها [English]

  • Ductility Reduction Factor
  • Concentrically Braced Frame
  • Pushover Analysis
  • Target Displacement
1. Asghari, A., "Dynamics of Structures, Basic and Applications to Earthquake Engineering", Volume 1,2, Publisher: Amirkabir University of Technology, Tehran, Iran, (2013).
2. BHRC, "Iranian Code of Practice for seismic Resistant Design of Buildings: Standard No. 2800 (4rd Edition) ", Building and Housing Research Center, (2015).
3. Uriz, P., Filippou, F.C. and Mahin, S.A., "Model for cyclic inelastic buckling of steel braces", J. Struct. Eng., No 134(4), pp. 619–628, (2008).
4. Uriz, P. and Mahin, S.A., "Toward earthquake-resistant design of concentrically braced steel-frame structures", PEER-2008/08, Pacific Earthquake Engineering Research Center (PEER), Univ. of California, Berkeley, Berkeley, CA; (2008).
5. Uang, C.M. and Nakashima, M., "Steel buckling-restrained frames", 16, Earthquake engineering: From engineering seismology to performance-based engineering, Y. Bozorgnia and V. V. Bertero, eds, CRC Press, Boca Raton, FL; (2004).
6. Mofid, M., Lotfollahi, M., "On the characteristics of new ductile knee bracing systems", Journal of Constructional Steel Research, No 62, pp.271–281, (2006).
7. Balendra, T., Huang, X., "Overstrength and ductility factors for steel frames designed according to BS 5950", Journal of Structural Engineering, ASCE 2003; No 129(8), pp. 1019–35, (2003).
8. Kim, J., Choi, H., "Response modification factors of chevron-braced frames", Engineering Structures, No. 27,pp. 285–300, (2005).
9. Maheri, MR., Akbari R., "Seismic behavior factor, R, for steel X-braced and knee-braced RC buildings", Engineering Structures, No. 25(15), pp.1505–13, (2003).
10. Mahmoudi, M., Zaree, M., "Evaluating response modification factors of concentrically braced steel frames", Journal of Constructional Steel Research; No. 66, pp. 1196-1204, (2010).
11. Asgarian, B., Shokrgozar, HR., "BRBF response modification factor", Journal of Constructional Steel Research;No. 65(2), pp. 290-8, (2009).
12. MHUD, "Iranian National Building Code, Part 10, Steel Structure Design", Tehran (Iran): Ministry of Housing and Urban Development; (2013).
13. American Institute of steel construction (AISC341), "Seismic Provisions for Structural Steel Buildings", (2010).
14. American Society of Civil Engineers (ASCE7), "Minimum Design Loads for Buildings and Other Structures", pp.7, (2010).
15. ETABS, "Integrated building design software", version 9.7.3, Berkeley; (California), USA: Inc., (1995).
16. American Institute of steel construction, "Specification for structural steel buildings", (2010).
17. Federal Emergency Management Agency (FEMA), "Prestandard and Commentary for the Seismic Rehabilitation of Buildings", (FEMA 356), Washington, DC, (2000).
18. Balendra, T. and Huang, X., "Overstrength and Ductility Factors for Steel Frames Designed According to BS 5950", Journal of Structural Engineering, ASCE, Vol. 129, No. 8, (2003).
19 .Newmark, N.M. and Hall, W.J., "Seismic Design Criteria for Nuclear Reactor Facilities", Rep. No. 46, Building Practices for Disaster Mitigation, National Bureau of Standards, U.S. Department of Commerce, (1973).
20. Newmark, N.M. and Hall, W.J., "EERI Monograph Series", Earthquake Spectra and Design, Earthquake Engineering Research Institute, Oakland, California, (1982).
21. Lai, S.P. and Biggs, J.M., "Inelastic Response Spectra for Seismic Building Design", Journal of Structural Engineering, ASCE, Vol. 106, No. ST6, (1980).
22. Miranda, E., "Site-Dependent Strength Reduction Factors", Journal of Structural Engineering, ASCE, Vol. 119, No. 12, (1993).
23.Miranda, E. and Bertero, V.V., "Evaluation of Strength Reduction Factors for Earthquake-Resistant Design", Earthquake Spectra, Vol. 10, No. 2, (1994).
CAPTCHA Image