Application of SVR and GRNN Models in Estimating Maximum Scour Depth at River Confluences under Live-Bed Condition

Document Type : پژوهشی

Authors

1 Shiraz University

2 Shirazu University

3 Shahid Chamran

Abstract

River confluences are one of the most complex places in river systems, that it is important to predict the maximum scour depth (Ds) at this place using intelligent systems that consider this complexity. Therefore, in this study, the performance of two artificial intelligence models, namely, SVR (considering different validation techniques including train-test, K-Fold and leave-one-out) and GRNN was evaluated. Results showed that, although all models show approximately good accuracy in predicting the Ds; but, SVR with train-test validation method shows more accuracy (with R2, MAE, MARE, RMSE and NSE of 95.66, 0.0124, 4.26, 0.0168 and 0.993, respectively), and after that SVR K-Fold (at K=9), SVR leave-one-out; and GRNN are the accurate models in this study, respectively.

Keywords


1. Taylor, E.H., "Flow characteristics at rectangular open channel confluence", Transactions of ASCE, No. 109, pp. 893–902, (1944).
2. Webber, N.B., Greated, C.A., "An investigation of flow behavior at the junction of rectangular channel", Proceedings of the Institution of Civil Engineers., Thomas telford Lte., London, Vol. 34, pp. 321-334, (1966).
3. Modi, P.N; Ariel, P.D., Dandekar, M.M., "Conformal mapping for channel junction flow ", Journal of Hydraulic Engineering., No. 107(12), pp. 1713-1733, (1981).
4. Best, J.L, Reid, I., "Separation zone at open channel junctions", Journal of Hydraulic Engineering., ASCE, No. 100(11), pp. 1588-1594, (1984).
5. Best, J.L., "Flow dynamics at river channel confluences: Implications for sediment transport and bed morphology", Recent Devel. In Fluvial Sedimentology, SEPM Spec. Publ. 39, Etheridge, F.G; Floers, R.M., Harvey, M.D., eds., pp. 27-35, (1987).
6. Ramamurthy, A.S., Carballada, L.B., Tran, D.M., "Combining open channel flow at right angled junctions", Journal of Hydraulic Engineering., ASCE, No. 114(12), pp.1449-1460, (1988).
7. Hager, W.H., "Transition flow in channel junctions", Journal of Hydraulic Engineering, ASCE, No. 115(2), pp. 243-259, (1989).
8. Gurram, S.K., Karki, K.S., Hager, W.H., "Subcritical junction flow", Journal of Hydraulic Engineering., ASCE, No. 123(5), pp. 447-455, (1997).
9. Hsu, C.C., Wu, F.S., Lee, W.J., " Flow at 90 equal width open channel junction", Journal of Hydraulic Engineering., ASCE, No. 124(2), pp.186-191, (1998a).
10. Hsu, C.C., Lee, W.J., Chang, C.H., "Subcritical open channel junction flow", Journal of Hydraulic Engineering., ASCE, No. 124(8), pp. 847-855, (1998b).
11. Weber, L.J., Schumate, E.D., Mawer, N., "Experimentals on flow at a 900 open channel Junction", Journal of Hydraulic Engineering., ASCE, No. 127, pp. 340–350, (2001).
12. برقعی، س.م.، سخائی‌فر، س.م.، دائمی، ع.، "بررسی آزمایشگاهی اتصال کانال ها"، مجموعۀ مقالات ششمین سمینار بین‌اللملی مهندسی رودخانه، اهواز، صص. 611-619، (1381).
13. Lyubimova, T., Lepikhin, A., Konovalov, V., Parshakova, Y., Tiunov, A., "Formation of the density currents in the zone of confluence of two rivers", Journal of Hydrology, No. 508, pp. 328–342, (2014).
14. Coelho, M.M.L.P., "Experimental determination of free surface levels at open channel junctions", Journal of Hydraulic Engineering., Research, No. 53(3), pp. 394-399, (2015).
15. Weerakoon, S.B., Kawahara, Y., Tamia, N., "Three dimensional flow structure in channel confluences of rectangular section", Proceeding, 24th IAHR congress., pp. 373-380, (1991).
16. Bradbrook, K.F., Lane, S.N., Richards, K.S., Biron, P.M., Roy, A.G., "Role of bed discordance at asymmetrical river confluences", Journal of Hydraulic Engineering., No. 127, pp. 351-368, (2001).
17. Huang, J.L., Weber, L.J., Yong, G.L., "Three Dimensional Numerical Study of Flows in Open Channel Junctions flow", Journal of Hydraulic Engineering., ASCE, No. 128(3), pp. 268-280, (2002).
18. Shakibainia, A., Majdzadeh Tabatabai, M.R., Zarrati, A.R., "Three-dimensional numerical study of flow structure in channel confluences", Canadian Journal of Civil Engineering., No. 37(5), pp. 772-781, (2010).
19. Ghostine, R., Vazquez, J., Terfous, A., Mose, R., Ghenaim A., "Comparative study of 1D and 2D flow simulations at open-channel junctions", Journal of Hydraulic., Research, No. 50(2), pp. 164-170, (2012), DOI: 10.1080/00221686.2012.661563.
20. Baranya, S., Olsen, N.R.B., Jozsa, J., "Flow analysis of a river confluence with field measurements and RANS model with nested grid approach", River Research and Applications, No. 31(1), pp. 28-41, (2013), DOI: 10.1002/rra.2718.
21. Sharifipour, M., Bonakdari, H., Zaji, A.H., Shamshirband, S., "Numerical investigation of flow field and flowmeter accuracy in open-channel junctions", Engineering Applications of Computational Fluid Mechanics, No. 9(1), pp. 280-290, 2015, DOI: 10.1080/19942060.2015.1008963.
22. Mosley, M.P., "An experimental study of channel confluences", Journal of Geology., No. 84, pp. 535-562, (1976).
23. Best, J.L., "Sediment transport and bed morphology at river channel confluences", Journal of Association OF Sedimentologists , No. 35, pp. 481-498, (1988).
24. Roy, G.A., Roy, R., "Changes in channel Size at river Confluences with coarse bed material", Earth surface processes and Land forms, No. 13, pp. 77–84, (1988).
25. برقعی، س. م.، نظری، ا.، "بررسی آزمایشگاهی الگوی رسوب در تقاطع کانال‌ها"، مجموعه مقالات ششمین کنفرانس بین‌المللی مهندسی عمران، اصفهان، صص. 247-255، (1382).
26. Ghobadian, R., Shafai Bejestan, M., "Investigation of sediment patterns at river confluence ", Journal of Applied Science., No. 7(10), pp. 1372-1380, (2007).
27. Shafai Bejestan, M., Hemmati, M., "Scour depth at river confluence of unequal bed level", Journal of Applied Science., No. 8(9), pp. 1766-1770, (2008).
28. Borghei, S.M., Sahebari Jabbari, A.," Local scour at open channel junctions", Journal of Hydraulic Research, No. 48(4), pp. 538-542, (2010).
29. محمدی، ص.، "بررسی تأثیر گردشدگی لبۀ پایین‌دست محل اتصال بر الگوی رسوب در تلاقی رودخانه‌ها"، پایان‌نامۀ کارشناسی ارشد، دانشگاه شهید چمران، اهواز، (1390).
30. بلوچی، ب.، "بررسی تأثیر آورد رسوب شاخۀ اصلی بر الگوی رسوب در محل تلاقی رودخانه‌ها"، پایان‌نامۀ کارشناسی ارشد، دانشگاه شهید چمران، اهواز، (1391).
31. Kambekar, A.R., Deo, M.C., "Estimation of pile group scour using neural networks", Journal of Applied Ocean Research, No. 25, pp. 225–234, (2003).
32. Bateni, S.M., Borghei, S.M., Jeng, D.S., "Neural network and neuro-fuzzy assessments for scour depth around bridge piers",. Journal of Engineering Applications of Artificial Intelligence, No. 20, pp. 401–414, (2007).
33. Azamathulla, H.M.D., Deo, M.C., Deolalikar, P.B., "Alternative neural networks to estimate the scour below spillways", Journal of Advances in Engineering Software, No. 39, pp. 689–698, (2008).
34. Abidin, K., "Artificial neural network study of observed pattern of scour depth around bridge piers",. Journal of Computers and Geotechnics, No. 37, pp. 413–418, (2010).
35. Ismail, A., Jeng, D.S., Zhang, L.L., Zhang, J.S., "Predictions of bridge scour: Application of a feed-forward neural network with an adaptive activation function", Journal of Engineering Applications of Artificial Intelligence, No. 26, pp. 1540–1549, (2013).
36. Cheng, M., Cao, M., Wu, Y., "Predicting equilibrium scour depth at bridge piers using evolutionary radial basis function neural network", Journal of Computing in Civil Engineering., (2014).
37. Hong, J., Goyal, M.K., Chiew, Y., Chua L.H.C., "Predicting time-dependent pier scour depth with support vector regression", Journal of Hydrology, pp. 241–248, (2012).
38. Jahangirzadeh, A., Shamshirband, S., Aghabozorgi, S., Akib, S., Basser, H., Anuar, N.B., Kiah, M.L.M., "A Cooperative Expert Based Support Vector Regression (Co-ESVR) System to Determine Collar Dimensions around Bridge Pier", Neurocomputing journal, (2014).
39. Pal, M., Singh, N.K., Tiwari, N.K., "Support vector regression based modeling of pier scour using field data", Engineering Applications of Artificial Intelligence., No. 24(5), pp. 911–916, (2011).
40. غضنفری هاشمی، س.، اعتماد شهیدی، ا.، "پیش‌بینی عمق آبشستگی اطراف پایۀ پل بااستفاده از ماشین‌های بردار پشتیبان"، مجلۀ علمی- پژوهشی عمران مدرس، شمارۀ 12(2)، صص. 23-36، (1391).
41. هوشیاری‌پور، ف.، نوری، ر.ا.، "استفاده از تکنیک ماشین بردار پشتیبان در پیش‌بینی ابعاد چالۀ آبشستگی پایین‌دست یک پرتابۀ جامی‌شکل"، مجلۀ آب و مهندسی محیط زیست ایران، شمارۀ 1(1)، صص. 35-45، (1392).
42. نیکو، م.ر.، کراچیان، ر.، "پهنه‌بندی کیفی منابع آب سطحی بااستفاده از ماشین‌های بردار پشتیبان احتمالاتی و شبکه‌های بیزی"، چهارمین همایش تخصصی مهندسی محیط زیست، دانشگاه تهران. (1389).
43. Specht, D.F., "A General Regression Neural Network", IEEE Transaction on Neural Networks, No. 2(6), pp. 568–576, (1991).
44. Li, C.F., Zhang, J.B., Wang, S.T., "Comparative Study on Input-Expansion-Based Improved General Regression Neural Network and Levenberg-Marquardt BP Network", Lecture Notes in Computer Science, No. 4113, pp. 83-93, (2006).
45. Mehmani, A., Chowdhury, S., Messac, A., "Predictive quantification of surrogate model fidelity based on modal variations with sample density", Structural and Multidisciplinary Optimization, No. 52 (2), pp. 353–373, (2015).
CAPTCHA Image