1. Melenk, JM., Babuška, I, "The Partition of Unity Finite Element Method: Basic Theory and Applications", Comp Methods Appl Mech Eng. Vol. 139, No. 1, pp. 289-314, (1996).
2. Mohammadi, S., "Extended Finite Element, Method for Fracture Analysis of Structures", 1st edn. Black well Publishing Ltd. (2008).
3. Sundararajan, N., "Enriched Finite Element Methods: Advances & Applications", Cardiff University. (2011).
4. Moes, N., Dolbow, J., Belytschko, T., "A Finite Element Method for Crack Growth without Remeshing", Int. J. Numer. Methods Eng. Vol. 46, No. 1, pp. 133–150, (1999).
5. Dolbow, J., "An Extended Finite Element Method with Discontinuous Enrichment for Applied Mechanics", Northwestern university, (1999).
6. Babuška, I., Rheinboldt, W.C., "A‐posteriori Error estimates for the Finite Element Method", Int. J. Numer. Methods Eng. Vol. 12, No. 10, pp. 1597-1615, (1978).
7. Zienkiewicz, O.C., Boroomand, B., Zhu, J.Z., Recovery Procedures in Error Estimation and Adaptivity Part I: Adaptivity in linear problems. Comp Methods Appl Mech Eng. Vol. 176, No. 1, pp. 111-125, (1999).
8. Zienkiewicz, O.C., Taylor, R.L., "The Finite Element Method for Solid and Structural Mechanics", Butterworth-heinemann, (2005).
9. Sih, G., Paris, C.P., Irwin, G.R., "On Cracks in Rectilinearly Anisotropic Bodies", Int. J. of Fract Mech. Vol. 1, No. 3, pp. 189-203, (1965).
10. Paulino., GH., Kim, J.H., A New Approach to Compute T-stress in Functionally Graded Materials by means of the Ineraction Integral Method on Cracks in Rectilinearly Anisotropic Bodies, Eng. Fract Mech, Vol. 71, No. 1, pp. 1907-1950, (2004).
11. Unger, J.F., Eckardt, S., Könke, C., Modelling of Cohesive Crack Growth in Concrete Structures with the Extended Finite Element, Comp Methods Appl Mech Eng. Vol. 196, No. 4, pp. 4087-4100, (2007).
Send comment about this article