Performance Improvement of Urban Runoff System by Using Additive-Contained Pervious Concrete

Document Type : Research Note

Authors

1 Semnan University

2 Semnan

Abstract

By adding perlite and leca to porous concrete, its physical characteristics were studied.  Compression strength, hydraulic conductivity and porosity of two porous concretes (without fine grains and with 20% fine grains) were measured. Results showed that adding 20% fine grains to porous concrete highly decreases hydraulic conductivity and porosity and increases compression strength. The highest compression strength (20.5 MPa) was seen in without-fine-grains samples (L10-0 treatment) and in with-fine-grains samples (34.85 MPa) in L15-20 treatment. The L5-0 treatment in both cases of with/without additives, had the highest hydraulic conductivity and porosity. Leca had better performance than perlite.

Keywords


1. Bamforth, P.B., "The Properties of High Strength Lightweight Concrete", Concrete, Vol. 21, No. 4, pp. 8-9, (1987).
2. ACI Committee 522, "Pervious Concrete", ACI 522R-06 Report, (2006).
3. Ferguson, B. K., "Pervious Pavement", Taylor and Francis Group, New York, (2005).
4. Yang, J. and Jiang, G., "Experimental Study on Properties of Pervious Concrete Pavement Materials", Cement and Concrete Res, Vol. 33, pp. 381-386, (2003).
5. Harrisburg, P. A. "The Pennsylvania Handbook of Best Management Practice for Developing Areas", Pennsylvania Department of Environmental Protection, (1998).
6. Tennis, P.D., M. L. Leming and Akers. D.J.و "Pervious Concrete Pavements", EB302, Portland Cement Association, Skokie, Illinois, (2004).
7. Collins, K. A., Hunt, W. F., and Hathaway, J. M., "Hydrologic Comparison of Four Yypes of Permeable Pavement and Standard Asphalt in Eastern North Carolina", J. Hydrol. Eng, Vol. 13, No. 12, Pp. 1146-1157, (2008).
8. Ullate, E. G., Lopez, E. C., Fresno, D. C. and Bayon J. R., "Analysis and Contrast of Different Pervious Pavements for Management of Storm-water in a Parking Area in Northern Spain", Water Resour. Manage, Vol. 25, pp. 1525-1535, (2011).
9. حسامی، سعید و احمدی، سعید، «ارزیابی روسازی بتنی متخلخل سازگار با محیط‌زیست بااستفاده از خاکستر پوستۀ برنج»، مهندسی زیرساخت‌های حمل و نقل، جلد اول، شمارۀ دو، صص. 63-76، (1394).
10. Ardali, Y., Turan, N. G. and Temel, F. A., "Cu (II) Removal from Industrial Waste Leachate by Adsorption Using Expanded Perlite", J. Inst. Nat. Appl. Sci, Vol. 19, No. (1-2), pp. 54-61, (2014).
11. نادری، محمود و بنیادی، علیرضا، «مقایسۀ طرح اختلاط و مقاومت فشاری بتن‌های سبک ساخته‌شده با سبک‌دانه‌های لیکا، اسکریا و پرلیت بااستفاده از روش پیچش»، نشریۀ مهندسی عمران دانشگاه فردوسی مشهد، دورۀ 23، شمارۀ 2، صص. 71-90، (1391).
12. بهمنی، منوچهر، راه‌نورد کیسمی، زهرا، علیا، محمد‌ابراهیم و کاسه‌گری، حسین، «بررسی میزان حذف سورفاکتانت آنیونی LABS با جاذب-های معدنی پرلیت و کربن فعال»، نشریۀ پژوهش‌های کاربردی در شیمی، سال 7، شمارۀ 2، صص. 67-73، (1392).
13. Imura, S., Kaniva, H., Horio, M., and Kimura, K., "A Novel Fluidized Bed Manufacturing of High Performance Artificial Lightweight Aggregate Concrete", Kristiansand, Norway, pp. 611-613, (2000).
14. STM-C332, "Standard Specification for Lightweight Aggregate for Institute Concrete", American Society of Testing Materials, (1999).
15. ACI Committee 211, "Guide for Selecting Proportions for No-slump Concrete", ACI 211.3R Report, (2006).
16. British Standard, Testing Concrete, "Part 108. Method for making test cubes from fresh concrete", BS 1881: Part 108, (1983).
17. ASTM C1754/C1754M-12, "Standard Test Method for Density and Void Content of Hardened Pervious Concrete", ASTM International, USA, (2012).
CAPTCHA Image