Improvement of Pareto Diagrams in Topology Optimization Using Unstructured Polygonal Finite Element

Document Type : پژوهشی

Authors

yazd university

Abstract

One of approaches in weight reduction of structures is introduction of gaps in the design domain. This basic idea has led the formation of topology optimization algorithms. One of the problems frequently seen in topology optimization problems using common elements such as square or rectangular elements is the checkerboard phenomenon. Generally speaking, any discretization scheme that can better estimate the continuous design domain results in reducing the checkerboard phenomenon. In this article, the unstructured polygonal finite elements are used for discretization of design domain. Two examples corresponding to convex and nonconvex design domains are investigated and improved results and Pareto charts are presented in comparison to results obtained from using the square elements. The results demonstrate that using polygonal elements results in preventing the checkerboard phenomenon and reduction of computation time.

Keywords


1. Suresh, K. A., 199-line Matlab code for Pareto-optimal tracing in topology optimization, Structural and Multidisciplinary Optimization, Vol. 42, No. 5, pp. 665-679, (2010).
2. Sigmund, O. and J. Petersson, "Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards", mesh-dependencies and local minima. Structural optimization, Vol. 16. No. 1, pp. 68-75, (1998).
3. Talischi, C., Paulino, G.H., and Le, C.H., "Topology optimization using Wachspress-type interpolation with hexagonal elements", Multiscale and functionally graded materials, Vol. 973. No. 1, pp. 309-316, (2006).
4. Talischi, C., Paulino, G. H., Pereira, A. and Menezes, I. F., "Polygonal finite elements for topology optimization: a unifying paradigm", International journal for numerical methods in engineering, Vol. 82, No. 6, pp. 671-698, (2010).‏
5. Talischi, C., Paulino, G.H. and Le, C.H., "Honeycomb Wachspress finite elements for structural topology optimization". Structural and Multidisciplinary Optimization, Vol. 37, No. 6, pp. 569-583, (2009).
6. Rozvany, G.I., "A critical review of established methods of structural topology optimization", Structural and Multidisciplinary Optimization, Vol. 37, No. 3, pp. 217-237, (2009).
7. Du, Q., Faber, V. and Gunzburger, M., "Centroidal Voronoi tessellations: applications and algorithms". SIAM review, Vol. 41, No. 4, pp. 637-676, (1999).
8. Talischi, C., Paulino, G.H., Pereira, A. and Menezes, I. F., "PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab", Structural and Multidisciplinary Optimization, Vol. 45, No. 3, pp. 309-328, (2012).‏
9. Sieger, D., Alliez, P. and Botsch, M., "Optimizing voronoi diagrams for polygonal finite element computations", in Proceedings of the 19th international meshing roundtable, Springer, pp. 335-350, (2010).
10. Du, Q., Emelianenko, M., and Ju, L., "Convergence of the Lloyd algorithm for computing centroidal Voronoi tessellations", SIAM journal on numerical analysis, Vol. 44, No. 1, pp. 102-119, (2006).
11. اکبرزاغی، مهناز، «بهینه‌سازی توپولوژی چندهدفه در سازه‌های پیوسته»، (پایان‌نامۀ کارشناسی ارشد)، دانشگاه یزد، (1394).
12. Sukumar, N. and Tabarraei, A., "Conforming polygonal finite elements", International Journal for Numerical Methods in Engineering, Vol. 61, No. 12, pp. 2045-2066, (2004).
13. Madeira, J.A., Rodrigues, H. and Pina, H., "Multi-objective optimization of structures topology by genetic algorithms", Advances in Engineering Software, Vol. 36, No. 1, pp. 21-28, (2005).
14. Sigmund, O., "A 99 line topology optimization code written in Matlab", Structural and multidisciplinary optimization, Vol. 21, No. 2, pp.120-127, (2001).
15. Andreassen, E., Clausen, A., Schevenels, M., Lazarov, B. S., and Sigmund, O., "Efficient topology optimization in MATLAB using 88 lines of code", Structural and Multidisciplinary Optimization, Vol. 43, No. 1, pp. 1-16, (2011).‏
16. Bendsøe, M.P. and Sigmund, O., "Topology optimization: Theory", methods and applications. Springer, Berlin, (2003).
17. Hamda, H., Roudenko, O., and Schoenauer, M., "Application of a multi-objective evolutionary algorithm to topology optimum design", in Fifth international conference on adaptive computing in design and manufacture, (2002).
18. Luo, Z., Chen, L., Yang, J., Zhang, Y., and Abdel-Malek, K., "Compliant mechanism design using multi-objective topology optimization scheme of continuum structures", Structural and Multidisciplinary Optimization, Vol. 30, No. 2, pp. 142-15, (2005).
CAPTCHA Image