rutting is one of the most important distresses in asphalt pavements, which in addition to reducing the service life of the pavement, poses serious risks to road users. Therefore, modeling the rutting behavior of asphalt mixtures is of great importance and if a suitable model is determined, the production of asphalt with a high probability of rutting can be prevented. The aim of this study was to determine the effect of bitumen Performance Grade, different percentages of SBS polymer, temperature, number of loading cycles, and percentage of air void on the rutting strength of asphalt mixtures by examining the creep behavior and using the neural network model. The results of this study showed that the use of polymer and PG64-22 bitumen reduces the cumulative strain and improves the paving resistance of the pavement and the best resistance of the sample contains 6% of polymer with PG64-22 bitumen. Also, by increasing the loading cycle the permanent deformations created in the pavement are significantly increased and the resistance of the mixture to ruttingis reduced. However, the addition of polymer has reduced this rate and improves the process of reducing the resistance and increasing the creep of asphalt mixtures. The results of the modeling showed that the neural network model has a very good performance in terms of predicting creep behavior and rutting strength of modified polymer asphalt mixtures.
Ziari, H., Moniri, A., and Norouzi, N., "The effect of nanoclay as bitumen modifier on rutting performance of asphalt mixtures containing high content of rejuvenated reclaimed asphalt pavement", Petroleum Science and Technology, Vol. 37(17), pp. 1-6, (2019).
Ziari, H., Amini,. A., Goli, A., and Mirzaiyan. D., "Predicting rutting performance of carbon nano tube (CNT) asphalt binders using regression models and neural networks", Construction and Building Materials, Vol. 160, pp. 415-426, (2018).
Ameri, M., Mirzaiyan, D., and Amini, A., "Rutting resistance and fatigue behavior of gilsonite-modified asphalt binders", Journal of Materials in Civil Engineering, Vol. 30, No. 11, pp. 04018292, (2018).
Arabani, M., and Yousefpour Taleghani, M., "Rutting behavior of hot mix asphalt modified by polyvinyl chloride powder", Petroleum Science and Technology, Vol. 35(15), pp. 1621-1626, (2017).
Ali, Y., Irfan,. M., Ahmed, S., and Ahmed, Sh., "Empirical correlation of permanent deformation tests for evaluating the rutting response of conventional asphaltic concrete mixtures", Journal of Materials in Civil Engineering, Vol. 29(8), pp. 04017059, (2017).
Coleri, E., Harvey, JT., Yang, K., and Boone, JM. "Investigation of asphalt concrete rutting mechanisms by X-ray computed tomography imaging and micromechanical finite element modeling", Materials and structures, Vol. 46(6), pp. 1027-1043, (2013).
Mirzaiyan, D., Amini, A., and Jalali, F., "Investigating the Influence of SBS and Gilsonite on the Rheological Properties of Asphalt Binder Using Statistical Analysis", International Journal of Scientific and Technical Research in Engineering, Vol. 4(1), pp. 31-42, (2019).
Vonk, W., Korenstra, J., Bodt, D., and Heimerikx, G., "SBS copolymers for road binders with improved processing characteristics and heat stability", EURASPHALT & EUROBITUME CONGRESS, Vol. 3, (1996).
Chen, JS., and Huang, CC., "Fundamental characterization of SBS‐modified asphalt mixed with sulfur", Journal of applied polymer science, Vol. 103(5), pp. 2817-2825, (2007).
زیاری، ح.، بهبهانی، ح.، و ارجمندپور، ج.، «بررسی تأثیر انواع پلیمر ترموپلاستیک الاستومر بر حساسیت رطوبتی مخلوطهای آسفالتی با استخوانبندی سنگدانهای»، فصلنامه مهندسی حمل و نقل، شماره 6(3)، ص. 413-428، (2015).
ساعدی، س.، صادقیان اصل، گ.، و یثربی، س.ح.، «تأثیرتوأم استایرن بوتادین استایرن و پروپلاست در بهبود عملکرد آسفالت ماستیکی درشتدانه»، فصلنامه مهندسی حمل و نقل، شماره 10(2)، ص. 385-399، (2018).
13. صاحبالزمانی، س.ح.، ضیاء علوی، س. م.و، و فرزانه، ا.، «مقایسهی خواص عملکردی مخلوط آسفالتی اصلاحشده با قیر پلیمری و گرانول خشک پلیمری»، پژوهشنامه حل و نقل، شماره 15(3)، ص. 369-380، (2018).
14. فخری، م.، شاه ابراهیمی، ا.، و چاوشیان نائینی، س. ف.، «بررسی شیارشدگی و اثر خودترمیمی بر خستگی مخلوطهای آسفالتی اصلاحشده»، پژوهشنامه حمل و نقل، شماره 17(1)، ص. 143-156، (2019).
Sabouri, M., Mirzaeian, D., and Moniri, A., "Effectiveness of Linear Amplitude Sweep (LAS) asphalt binder test in predicting asphalt mixtures fatigue performance", Construction and Building Materials, Vol. 171, pp. 281-290, (2018).
Khodaii, A., and Mehrara, A., "Evaluation of permanent deformation of unmodified and SBS modified asphalt mixtures using dynamic creep test", Construction and Building Materials, Vol. 23(7), pp. 2586-2592, (2009).
Mirzaiyan, D., Ameri, M., Amini, A., Sabouri, M., and Norouzi, A., "Evaluation of the performance and temperature susceptibility of gilsonite-and SBS-modified asphalt binders", Construction and Building Materials, Vol. 207, pp. 679-692, (2019).
Aflaki, S., and Tabatabaee, N., "Proposals for modification of Iranian bitumen to meet the climatic requirements of Iran", Construction and Building Materials, Vol. 23(6), pp. 2141-2150, (2009).
Jafari, M., Babazadeh, M., and Aflaki, S., "Effects of stress levels on creep and recovery behavior of modified asphalt binders with the same continuous performance grades", Transportation Research Record: Journal of the Transportation Research Board, Vol. 2505(1), pp. 15-23, (2015).
دیواندری، ح.، و سادات خلردی، س.، «مدلسازی عمق شیارشدگی آسفالت با استفاده از نتایج آزمایش خزش دینامیکی»، پژوهشنامه حمل و نقل، شماره 15(2)، ص. 15-33، (2018).
خبیری، م.، ذات اکرم، م.، و میرابی مقدم، م.، «بررسی آزمایشگاهی و تحلیل آماری اثر آلایندهها بر مقاومت لغزندگی روسازی آسفالتی»، فصلنامه مهندسی حمل و نقل، شماره 8(4)، ص. 589-602، (2019).
فرج اللهی، ا.، احدی، م.، و طایفی نصرآبادی، ع.، «مدلسازی شاخص وضعیت روسازی (PCI) با استفاده از رگرسیون خطی چندگانه و شبکه عصبی انتشار برگشتی»، پژوهشنامه حمل و نقل، شماره 17(1)، ص. 47-60، (2020).
فخری، م.، کریمی، س.، و قربانی نیک، م.، «تخمین ناهمواری روسازی بر اساس خرابیهای سطحی با استفاده از شبکه عصبی (مطالعه موردی: محورهای شریانی ایران)»، فصلنامه مهندسی حمل و نقل، شماره 12(3)، ص. 697-713، (2021).
Xiao, F.T and Amirkhanian, S.N., "Effects of binders on resilient modulus of rubberized mixtures containing RAP using artificial neural network approach", Journal of Testing and Evaluation, Vol. 37(2), p. 129-13, (2009).
Wu, Z., Hu, S., and Zhou, F., "Prediction of stress intensity factors in pavement cracking with neural networks based on semi-analytical FEA", Expert Systems with Applications, Vol. 41(4), pp. 1021-1030, (2014).
Rooholamini, H., Imaninasab, R., and Vamegh, M., "Experimental analysis of the influence of SBS/nanoclay addition on asphalt fatigue and thermal performance", International Journal of Pavement Engineering, Vol. 20(6), pp. 628-637, (2019).
Ziari, H., Amini, A., and Goli, A., "The effect of different aging conditions and strain levels on relationship between fatigue life of asphalt binders and mixtures", Construction and Building Materials, Vol. 244, pp. 118345, (2020).
Aghasi, A. , Torbatinejad, M. and Bagherzadeh, A. (2022). Modelling of rutting behavior of modified polymer asphalt mixture using artificial neural network. Ferdowsi Civil Engineering, 35(3), 69-88. doi: 10.22067/jfcei.2022.76444.1135
MLA
Aghasi, A. , , Torbatinejad, M. , and Bagherzadeh, A. . "Modelling of rutting behavior of modified polymer asphalt mixture using artificial neural network", Ferdowsi Civil Engineering, 35, 3, 2022, 69-88. doi: 10.22067/jfcei.2022.76444.1135
HARVARD
Aghasi, A., Torbatinejad, M., Bagherzadeh, A. (2022). 'Modelling of rutting behavior of modified polymer asphalt mixture using artificial neural network', Ferdowsi Civil Engineering, 35(3), pp. 69-88. doi: 10.22067/jfcei.2022.76444.1135
CHICAGO
A. Aghasi , M. Torbatinejad and A. Bagherzadeh, "Modelling of rutting behavior of modified polymer asphalt mixture using artificial neural network," Ferdowsi Civil Engineering, 35 3 (2022): 69-88, doi: 10.22067/jfcei.2022.76444.1135
VANCOUVER
Aghasi, A., Torbatinejad, M., Bagherzadeh, A. Modelling of rutting behavior of modified polymer asphalt mixture using artificial neural network. Ferdowsi Civil Engineering, 2022; 35(3): 69-88. doi: 10.22067/jfcei.2022.76444.1135
Send comment about this article