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1-Introduction 
Predicting ground motion equations is one of the most 
important components of earthquake risk evaluation. The 
most prominent seismology variables affecting the 
ground motion parameters are the effects of source, path 
and site. In this context, four parameters were used to 
model the equations of PGA and PGV prediction, 
including MW (Moment magnitude of earthquake), Rjb 
(Joyner-Boore distance), Vs30 (average shear-wave 
velocity to a depth of 30 meters), F (the mechanism of 
faulting, including normal, strike-slip, reverse and reverse 
oblique faults). 

A subset of The Pacific Earthquake Engineering 
Research Center – Next Generation Attenuation 
Relationship (PEER-NGA) project database provided by 
Power, et al. was used as the database for development of 
GMPEs. The recordings, which lacked the required 
parameters as well as those being duplicate, were 
excluded from this study. Overall, from 3551 recordings, 
2777 recordings of different types of faults (e.g. normal, 
strike-slip, reverse and reverse oblique) were used to 
develop the model. 
 
2-Ground Motion Model 

The aim of this study was to predict the peak ground 
acceleration (PGA) and peak ground velocity (PGV) 
using the regression-based tree algorithm known as M5. 
The M5 model creates a linear multivariable model of the 
data at each node of the tree model. The three main steps 
required for the setup of decision tree models are the 
development, pruning and simplification of the tree. 

To better understand the equation and the effect of 
changes in each parameter in the final value of PGA and 
PGV, the natural logarithm of input and output 
parameters were used in the model, but they then were 
exponentiated. 

ln PGA
ln PGV

= α ∗ ln  Mw + β ∗ ln Rjb + γ ∗ ln Vs30 + C                         (1) 

 
𝑃𝐺𝐴
𝑃𝐺𝑉

= Mw
𝛼 ∗  Rjb

𝛽 ∗ Vs30
𝛾 ∗ exp C                                                   (2) 

The database was divided into two datasets: 80% for 
the training dataset and 20% for the testing dataset. The 
training dataset was used to train the algorithm and 
develop the model. The validation data were used as 
inputs for the model developed by the training dataset and 
the generalization ability of the models was assessed. 
Therefore, both training and validation datasets were used 
in the modeling process. To evaluate the function of 
models that were developed through M5, testing dataset, 
which did not contribute to the development of the model 
was used in the final model and the error rate and 
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correlation coefficient were calculated. Multiple 
classifications of training and testing datasets were used 
to find the best classification. The training and testing 
datasets were selected so that the minimum, maximum, 
mean and standard deviation of parameters in the two 
datasets were matched. 

The final equations for PGA and PGV shown in table 
1 and figure 1 and 2 respectively. 

 
Fig.1 PGA Equations tree 

 

 
Fig.2 PGV Equations tree 

 

Table 1. Equations Parameters 
GMPE Equation Mw Power Rjb Power Vs30 Power C 

PGA 

1 2.752 -0.726 -0.564 1.757E-01 

2 3.138 -1.295 -0.091 3.272E-02 

3 0.444 -0.146 -0.031 1.653E-01 

4 0.444 -0.127 -0.031 7.608E-02 

5 0.708 -0.816 -0.457 2.444E+00 

6 0.840 -1.052 -0.052 1.666E+00 

7 3.893 -0.553 -0.025 6.69E-04 

8 6.602 -0.584 -0.331 2.1E-05 

9 3.834 -1.410 -0.327 1.022E-01 

10 0.529 -0.252 -0.023 1.461E-01 

11 1.079 -0.795 -0.304 1.194E+00 

PGV 

12 4.686 -0.956 -0.321 1.441E-01 

13 7.114 -0.689 -0.784 1.191E-02 

14 6.892 -0.425 -0.042 1.43E-04 

15 8.358 -0.840 -0.792 2.475E-03 

16 0.572 -0.305 -0.780 7.16E+02 

17 0.572 -0.760 -0.528 5.145E+02 

18 4.210 -0.241 -0.114 2.62E-02 

19 0.198 -0.472 -0.617 2.045E+03 

Fa
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e

Normal

𝑅𝑗𝑏 ≤ 32.46 Equation 1

𝑅𝑗𝑏 > 32.46 Equation 2

Strike Slip

𝑅𝑗𝑏 ≤ 44.03

𝑅𝑗𝑏 ≤ 14.58 Equation 3

𝑅𝑗𝑏 > 14.58 Equation 4

𝑅𝑗𝑏 > 44.03

𝑀𝑤 ≤ 6.787 Equation 5

𝑀𝑤 > 6.787 Equation 6

Reverse

𝑅𝑗𝑏 ≤ 84.35

𝑅𝑗𝑏 ≤ 32.95 Equation 7

𝑅𝑗𝑏 > 32.95 Equation 8

𝑅𝑗𝑏 > 84.35 Equation 9

Reverse-
Oblique

𝑅𝑗𝑏 ≤ 22.99 Equation 10

𝑅𝑗𝑏 > 22.99 Equation 11

Fa
u

lt
 T

yp
e

Normal Equation 12

Strike Slip Equation 13

Reverse

𝑅𝑗𝑏 ≤ 41.06 Equation 14

𝑅𝑗𝑏 > 41.06 Equation 15

Reverse-
Oblique

𝑀𝑤 ≤ 6.49
𝑅𝑗𝑏 ≤ 24.65 Equation 16

𝑅𝑗𝑏 > 24.65 Equation 17

𝑀𝑤 > 6.49
𝑅𝑗𝑏 ≤ 29.22 Equation 18

𝑅𝑗𝑏 > 29.22 Equation 19
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3-Regression Results and Comparison 
Three PGA and PGV prediction models that have 
parameters similar to our model (i.e. those developed by 
Boore and Atkinson, Campbell and Bozorgnia, Gandomi) 
were used for the validation of the model based on the 
comparison of correlation coefficient (CC), root mean 
square error (RMSE) and mean absolute error (MAE) and 
the performance, reliability, parametric analysis and 
sensitivity of the model were evaluated. The advantage of 
our model was the calculation of PGA and PGV values 
rather than their natural logarithm, the simplicity of the 
model, and its better CC, RMSE and MAE for different 
types of faults regarding both training and testing 
datasets. 

 

Table 2. PGA Model Comparison 

Mech
anism 
Class 

Model 
 
 

Error 

Campbell-
Bozorgnia 

- 2007 

Boore-
Atkinson 

- 2008 

Gandomi-
Alavi - 
2011 

M5 

N 

CC 0.8988 0.9404 0.8967 0.9373 

MAE 0.5582 0.4320 0.9574 0.0340 

RMSE 0.7450 0.4898 1.0856 0.0567 

S 

CC 0.8808 0.8505 0.8777 0.9106 

MAE 0.5163 0.6077 0.7430 0.0364 

RMSE 0.6038 0.7473 0.8953 0.0856 

R 

CC 0.7377 0.7778 0.7205 0.9531 

MAE 0.8121 0.9785 0.5161 0.0313 

RMSE 0.9573 1.1246 0.7055 0.2677 

RO 

CC 0.6810 0.5142 0.6075 0.8041 

MAE 0.3997 0.7165 0.6532 0.0327 

RMSE 0.5662 0.8016 0.8907 0.0662 

 

Table 3. PGV Model Comparison 

Mech
anism 
Class 

Model 
 
 

Error 

Campbell-
Bozorgnia 

- 2007 

Boore-
Atkinson 

- 2008 

Gandomi
-Alavi - 

2011 
M5 

N 

CC 0.9015 0.9214 0.9491 0.9691 

MAE 0.6154 0.6023 0.5136 4.1675 

RMSE 0.7975 0.7694 0.6624 7.9640 

S 

CC 0.6651 0.8244 0.7922 0.8939 

MAE 0.5819 0.4762 0.5346 3.0824 

RMSE 0.8906 0.6146 0.6500 5.0869 

R 

CC 0.7119 0.7815 0.7679 0.8821 

MAE 0.5733 0.5059 0.5405 2.5625 

RMSE 0.7448 0.6690 0.6858 5.7484 

RO 

CC 0.4689 0.7857 0.7816 0.8560 

MAE 0.6366 0.4932 0.4796 6.7767 

RMSE 1.0323 0.6038 0.5990 9.5758 

 
4-Sensitivity And Parametric Analysis 

To better understand the effect of each input 
parameter in the model separately, sensitivity analysis 
was performed on all PGA and PGV prediction models 
that shown in table 4 and 5 respectively. In the PGA 
prediction model, it was shown that the Rjb distance 
highly influenced the model in different types of faults. 
When this parameter was omitted from the model, CC, 
RMSE and MAE were greatly affected. In normal and 
strike-slip faults, the second most important parameter in 
the model was the Mw and Vs30. Conversely, in reverse 
and reverse oblique faults, the Vs30 and Mw were the 
second most important parameter in the model. The 

sensitivity analysis of PGV prediction models similarly 
showed that in different types of faults, Rjb distance had a 
substantial effect on the model, followed by Mw and Vs30. 

 

Table 4. PGA Sensitivity Analysis 
Mechanism 

Class 
Model tree in 

absence of 
CC MAE RMSE 

Normal 

- 0.9373 0.0340 0.0567 

Mw 0.8290 0.0372 0.0607 

Rjb 0.0000 0.0571 0.0999 

Vs30 0.8472 0.0296 0.0551 

Strike-Slip 

- 0.9106 0.0364 0.0856 

Mw 0.8903 0.0429 0.0909 

Rjb 0.1618 0.0702 0.1549 

Vs30 0.9089 0.0406 0.0865 

Reverse 

- 0.9531 0.0313 0.2677 

Mw 0.9545 0.0438 0.3962 

Rjb -0.0939 0.0259 0.0301 

Vs30 0.9515 0.0320 0.2602 

Reverse - 
Oblique 

- 0.8041 0.0327 0.0662 

Mw 0.8208 0.0320 0.0687 

Rjb 0.3062 0.0480 0.0984 

Vs30 0.8069 0.0314 0.0663 

 

Table 5. PGV Sensitivity Analysis 
Mechanism 

Class 
Model tree in 

absence of 
CC MAE RMSE 

Normal 

- 0.9691 4.1675 7.9640 

Mw 0.8932 5.2204 9.5378 

Rjb 0.0000 6.6070 13.1714 

Vs30 0.9704 3.9900 7.2333 

Strike-Slip 

- 0.8939 3.0824 5.0869 

Mw 0.5975 5.2716 9.2373 

Rjb 0.3993 5.7575 10.5690 

Vs30 0.8229 3.7547 6.5424 

Reverse 

- 0.8821 2.5625 5.7484 

Mw 0.6774 3.2777 8.3848 

Rjb 0.5054 3.7534 9.5527 

Vs30 0.8785 2.7286 5.8157 

Reverse - 

Oblique 

- 0.8560 6.7767 9.5758 

Mw 0.6585 11.0747 15.7054 

Rjb 0.3377 11.3965 17.5614 

Vs30 0.8408 7.0653 9.9895 

 
To evaluate the power of predictive equations in this 

study, parametric analysis was performed on the database 
and the models showed that PGA and PGV always 
increase with Mw, increase and decrease with Rjb and Vs30, 
respectively. These findings were expected from a 
geologic point of view, and suggested that the predictive 
models are powerful and can be confidently used for 
prediction in seismic risk evaluation studies. 
 
5- Conclusions 
The suggested GMPEs in this study show reliable 
estimates of PGA and PGV values and meet different 
intended conditions and criteria in their validation. 
Additionally, these equations are rather simple and 
efficient alternatives to the complex equations presented 
in previous studies. Since M5-based GMPEs are 
developed using a comprehensive database with a wide 
range of properties, they can be utilized confidently for 
practical design purposes. 


