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1- Introduction 
Structural system identification is known as a prelude 
of damage detection and structural health monitoring 
in which identification is operated on the base of 
inputs and outputs data, and occasionally is needed to 
find the inverse solution of system transfer function. 
Generally in the system identification process, the 
inverse problem is often an ill conditioned problem 
from a mathematical point of view. This paper 
presents a method for identification of linear system 
physical parameters (structural mass, damping and 
stiffness matrices) using the inverse solution of the 
equation of motion in the frequency domain, by 
focusing on the reduction of the ill conditioning 
effect. The method utilizes the measured responses 
from the forced vibration test of the structure in order 
to identify system properties and detect the probable 
damages. 

Input and output data is gathered in an augmented 
matrix [A|b] and the large amount of this data causes 
the ill conditioned problem. Moreover, as an 
inevitable problem, there is a noise in the 
measurement that causes some discrepancies in the 
results of identification. Ill conditioning causes 
instability in the results of identification, the 
instability and noisy result reduces the validity of the 
results and accordingly it will be a worthless 
statistical method in system identification (SI). An 
algorithm is presented in this paper to improve the ill 
conditioning problem that is a special upper 
triangularization matrix method. The proposed 
algorithm can identify parallel and pseudo parallel 
vectors in the coefficient matrix of linear equations. 
By removing these linearly dependent vectors and 
thus reducing the degree of singularity of the matrix, 
stabilization results which is a key objective in 
numerical linear algebra. In order to perform an 
optimal estimation of identification results, least-
squares and penalty function methods are used. The 
validity and efficiency of the reduced singularity of 
the matrix method is tested on a non-shear eight 
frame structure by using the direct model updating 
method. The aforementioned structures have a non-
proportional damped matrix and are subjected to 
sweep harmonic forces. The results show that the 
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proposed algorithm improves the stability of the 
estimation and the answer is quite useful. 
 

2- Direct System Identification Method 
The direct identification method can be used to 
estimate full system properties including mass, M, 
damping, C, and stiffness, K, matrices of the system, 
based on the inverse solution of the equation of 
motion with the following formulations will be used. 
The equations of motion for a viscously damped 
linear system with "n" number of degrees-of-freedom 
and "m" time step of input and response can be 
written as: 

M୬ൈ୬Xሷ ୬ൈ୫ ൅ C୬ൈ୬Xሶ ୬ൈ୫ ൅ K୬ൈ୬X୬ൈ୫ ൌ F୬ൈ୫							(1)	

By using the properties of blocked matrices, and 
defining R୫ൈଷ୬ ൌ ሾXሷ ୫ൈ୬୘ Xሶ ୫ൈ୬୘ X୫ൈ୬୘ ሿ 
andQଷ୬ൈ୬ ൌ ሾM୬ൈ୬ C୬ൈ୬ K୬ൈ୬ሿ୘, Equation (1) 
yields:  

R୫ൈଷ୬Qଷ୬ൈ୬ ൌ F୫ൈ୬୘                                                (2) 

R is generally an ill-conditioned matrix and a 
small change in R can cause a large change in R-1. 
Therefore, the accuracy and precision of Equation (2) 
is very sensitive to noise in the R. The residual force 
in the equation of motion in the frequency domain 
and as regards Ghafori Ashtiany and Ghasemi [1] 
showed that to obtain the best estimation for the 
linear system properties, minimization of the real or 
imaginary part of residual forces approximately lead 
to identical results of the physical parameters. Thus, it 
can be expressed as follows: 

Eୖౣൈ౤ ൌ Rୖౣൈయ౤Qଷ୬ൈ୬ െ Fୖౣൈ౤
୘                              (3) 

The optimization objective function after 
minimization of the residual force and with regard to 
the condition of the unknown matrix (symmetrical 
system property matrices and diagonal mass matrix), 
is constrained by optimization as a penalty function 
and it is expressed as follows: 
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where Rp is the coefficient of the penalty function and 
it refers to the value of the objective function. 
Consequently, the Optimum solution, is available 

with a process of differentiation (
ப୤

ப୕౟ౠ
ൌ 0) and it can 

be written as follows: 
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మ
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୘                             (5) 

where p is a preconditioner such as the penalty 
function. 
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3- Reduced Singularity of the Matrix Algorithm 
The main idea of this paper is presented based on the 
reduced singularity of the matrix RT, which uses 
principles of linear algebra. In the proposed method, 
we identify numerical dependent column vectors in 
the matrix RT, and remove them from it. In fact, in the 
process of optimization of the problem (Equation 2) 
each of the column vectors, is an equation that is 
embedded in the rows of the matrix R. In the process 
of solving the resulting equation, the number of 
equations is too many and we aim to reduce the 
number of equations in a similar fashion by utilizing 
linear algebraic techniques. This has two advantages, 
first, it can make less rotation by the affected 
preconditioner in equation (5) in the coefficient 
matrix. Therefore there will be less errors in the 
resulting unknowns problem (Q). This arises from the 
idea that parallel or Pseudo parallel vectors in the 
coefficient matrix have been removed. Second, with 
reducing the degree of ill-conditioning of the 
problem, stability of the results will be enhanced. 

ALGORITHM: let A be an nൈn (square) matrix, 
and matrix B is the result of upper 
triangularization by following method on the 
matrix A, then i’th row of A ሺ	1 ൑ ݅ ൑ ݊ሻ is linear 
dependent if i’th column to end’th column of i’th 
row of  B are zero. 
Method of upper triangularization: 
1. from  The  three  elementary  row  operations 

(1. ݁ሺ௣,௤ሻ, 2. ݁ఒሺ௣ሻ, 3. ݁ሺ௣ሻାఒሺ௤ሻሻ,  The  second 
and third are used (dont interchange of two 
rows of A). 

2. Be  used ܣ௜,௜  as  a  pivot  element  and  befor 
pivoting,  if possible  the ܣ௜,௜  to be non‐zero 
	ሺ	1 ൑ ݅ ൑ ݊ሻ. 

3. In  the process,  if  the ܣ௜,௜ was zero, be used 
 .௜ାଵ,௜ାଵ as a pivot elementܣ

In order to use this algorithm to solve the equation 
(5), we must be careful about two things. First, the 
matrix R must be an	m ൈ n		ሺm ൐൐ nሻ, thus initially 
it should be partitioned into several n ൈ n sub 
matrices. Second, in the case of  λଵAଵ ൅ λଶAଶ ൅⋯൅
λ୲A୲ ൅ A୧ ൌ 0 the matrix A is rank deficient because 
one or more rows and columns of A are linear 
combinations of some or all of the remaining rows 
and columns. Here, the matrix A having a cluster of 
small singular values and there is well-determined 
gap between large and small singular values of A and 
it causes one type of system of equations with an ill-
conditioned coefficient matrix (A). Another type of 
ill-conditioning of matrix A exists in ill-posed 
problems. In this case, rank and numerical rank are 
full, but the ratio between the largest and the smallest 
singular values is large and we have numerical 
instability in the solution of the system of equations. 
This implies that one or more rows and columns of A 
are numerically dependent on other rows and 
columns. Thus, they can be written as λଵAଵ ൅ λଶAଶ ൅
⋯൅ λ୲A୲ ൅ A୧ ൌ ε. In the sub matrices of R, we 
encounter with this situation and finding a suitable 
estimate for ε is very important. 

4- Numerical Example 
The applicability of the proposed method on the 
identification of a general 8-story non-shear planar 
frame with non-proportional damping matrix as 
shown in Figure 1 is presented. Considering the rigid 
diaphragm effect, horizontal displacements are 
constrained at the story levels. To constrain the 
number of DOF’s of the model to eight, the system 
masses are lumped at the story levels. The exact 
stiffness matrix of the model is defined using the FE 
model. Harmonic sweep (whose frequency sweeps 
from 1 to 10 Hz) input forces are applied at the first 
story level and the corresponding acceleration 
responses were obtained. Considering that the 
measured responses are noisy, Gaussian random 
white noise has been added to the calculated 
responses. The level of the noise is defined as the root 
mean square (RMS) of noise with respect to the RMS 
of the structure response and input forces. In each 
case, the amount of error of the system properties is 
calculated based on the mean error of the diagonal 
elements of property matrices. In each case, the 
amount of error of the system properties is calculated 
based on the mean error of the diagonal elements of 
property matrices. The method allows the complete 
identification of the structural mass, damping and 
stiffness matrices by direct solution of differential 
equations of motion. The structural system 
identification sensitivity is presented in the Figure 
shown below in two cases using and not using the 
reduced matrix singularity method when data is 
disturbed with noise (0~10%), regularization and the 
reduced error in the results is observed.   

 

 
 

Fig. 1. Mean error percentage in system physical 
parameters identification for the case of 1~10% noises 

level: (a) not using reduce matrix    singularity, (b) using 
reduce matrix singularity 
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