استنتاج معادلات جدید برای تخمین بیشینه شتاب و سرعت زمین ناشی از زلزله

نوع مقاله : پژوهشی

نویسندگان

1 دانشگاه شاهد

2 دانشگاه آزاد اسلامی واحد تهران مرکز

چکیده

در این پژوهش یک روش نوین موسوم به M5، برای به‌دست‌آوردن معادلات پیش‌بینی حرکات نیرومند زمین مورد‌استفاده قرار گرفت. بیشینه شتاب زمین و بیشینه سرعت زمین بااستفاده از بزرگی زمین‌لرزه، فاصلۀ منبع تا سایت، متوسط سرعت موج برشی و مکانیسم گسلش و نیز بهره‌گیری از پایگاه داده‌های گستردۀ پژوهشگاه مهندسی زمین‌لرزه (PEER) فرمول‌بندی شدند. برای اعتبارسنجی، مدل حاصل با مدل‌های شناخته‌شده مقایسه گردید. تحلیل حساسیت و آنالیز پارامتریک برای تعیین اهمیت پارامترهای مؤثر بر مدل و حساسیت آن به تغییرات پارامترها انجام شد. معادلات پیشنهادی بسیار آسان است و می‌توان آنها را با اطمینان برای اهداف پیش‌طراحی استفاده نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Derivation of New Equations for Estimation of Earthquake Induced Peak Ground Acceleration and Velocity

نویسندگان [English]

  • Ali Derakhshani 1
  • Ali Saberi 2
1 Shahed University
2 Islamic Azad University Central Tehran Branch
چکیده [English]

In this study, a new method called M5, was employed to derive ground-motion prediction equations (GMPEs). Peak ground acceleration (PGA) and peak ground velocity (PGV) was formulated by seismic parameters including earthquake magnitude, earthquake source to site distance, average shear-wave velocity and faulting mechanisms with The Pacific Earthquake Engineering Research Center (PEER) database. For verification, the proposed model was compared with three well-known models by Correlation Coefficient, Root Mean Square Error and Mean Absolute Error. A sensitivity analysis and a parametric analysis was carried out to determine the contributions of the parameters affecting model and sensitivity of the models to the variations of the influencing parameters. The equations are remarkably simple and can reliably be used for pre-design purposes.

کلیدواژه‌ها [English]

  • Strong ground motion parameters
  • Prediction equations
  • M5 model tree
  • Earthquake risk assessment
1. N., Luco and C. A., Cornell, "Structure-specific Scalar Intensity Measures for Near-source and Ordinary Earthquake Ground Motions", Earthquake Spectra, Vol. 23, Pp. 357-392, (2007).
2. H., Güllü and E., Erçelebi, "A Neural Network Approach for AttenuationRelationships: An Application Using Strong Ground Motion Data from Turkey", Engineering Geology, Vol. 93, Pp. 65-81, (2007).
3. G. M., Atkinson and D. M., Boore, Boore-Atkinson NGA ground motion relations for the geometric mean horizontal component of peak and spectral ground motion parameters: Pacific Earthquake Engineering Research Center, (2007).
4. D. M., Boore, W. B., Joyner, and T. E., Fumal, "Equations for Estimating Horizontal Response Spectra and Peak Acceleration from Western North American Earthquakes: A Summary of Recent Work", Seismological research letters, Vol. 68, Pp. 128-153, (1997).
5. K. W., Campbell and Y., Bozorgnia, Campbell-Bozorgnia NGA Ground Motion Relations for the Geometric Mean Horizontal Component of Peak and Spectral Ground Motion Parameters: Pacific Earthquake Engineering Research Center, (2007).
6. A. F., Cabalar and A., Cevik, "Genetic Programming-based Attenuation Relationship: An Application of Recent Earthquakes in Turkey", Computers & Geosciences, Vol. 35, Pp. 1884-1896, (2009).
7. P., Somerville and R., Graves, "Characterization of Earthquake Strong Ground Motion", in Landslide Tsunamis: Recent Findings and Research Directions, ed: Springer, Pp. 1811-1828, (2003).
8. D. M., Boore and G. M., Atkinson, "Ground-motion Prediction Equations for the Average Horizontal Component of PGA, PGV, and 5%-damped PSA at Spectral Periods between 0.01 s and 10.0 s", Earthquake Spectra, Vol. 24, Pp. 99-138, (2008).
9. K. W., Campbell and Y., Bozorgnia, "NGA Ground Motion Model for the Geometric Mean Horizontal Component of PGA, PGV, PGD and 5% Damped Linear Elastic Response Spectra for Periods Ranging from 0.01 to 10 s", Earthquake Spectra, Vol. 24, Pp. 139-171, (2008).
10. A. H., Gandomi, A. H., Alavi, M., Mousavi, and S. M., Tabatabaei, "A Hybrid Computational Approach to Derive New Ground-motion Prediction Equations", Engineering Applications of Artificial Intelligence, Vol. 24, Pp. 717-732, (2011).
11. S., Thomas, G., Pillai, K., Pal, and M., Zuhair, "Prediction of Peak Ground Acceleration (PGA) using Artificial Neural Networks", Networks, Vol. 8, P. 10, (2013).
12. F., Yerlikaya-Özkurt, A., Askan, and G. W., Weber, "An Alternative Approach to the Ground Motion Prediction Problem by a Non-parametric Adaptive Regression Method", Engineering Optimization, Vol. 46, Pp. 1651-1668, (2014).
13. A. H., Alavi and A. H., Gandomi, "Prediction of Principal Ground-motion Parameters Using a Hybrid Method Coupling Artificial Neural Networks and Simulated Annealing", Computers & Structures, Vol. 89, Pp. 2176-2194, (2011).
14. J. R., Quinlan, "Learning with Continuous Classes", in 5th Australian joint conference on artificial intelligence, Pp. 343-348, (1992).
15. I., Witten and Y., Wang, "Induction of Model Trees for Predicting Continuous Classes", in Proc. Poster Papers Europ. Conf. Machine Learning, (1997).
16. A., Kaveh, T., Bakhshpoori and S., Hamze-Ziabari, "Derivation of New Equations for Prediction of Principal Ground-motion parameters using M5′ algorithm," Journal of Earthquake Engineering, Pp. 1-21, (2016).
17. N. C., Jung, I., Popescu, P., Kelderman, D. P., Solomatine, and R. K., Price, "Application of Model Trees and other Machine Learning Techniques for Algal Growth Prediction in Yongdam Reservoir, Republic of Korea", Journal of Hydroinformatics, Vol. 12, Pp. 262-274, (2010).
18. M., Power, B., Chiou, N., Abrahamson, and C., Roblee, "The Next Generation of Ground Motion Attenuation Models (NGA) Project: An Overview", in Proceedings, Eighth National Conference on Earthquake Engineering, (2006).
19. G. N., Smith, Probability and statistics in civil engineering: Collins London, (1986).
20. Y., Pan, J., Jiang, R., Wang, H., Cao, and Y., Cui, "A Novel QSPR Model for Prediction of Lower Flammability Limits of Organic Compounds Based on Support Vector Machine", Journal of hazardous materials, Vol. 168, Pp. 962-969, (2009).
21. Y., Kuo, M., Jaksa, A., Lyamin, and W., Kaggwa, "ANN-based Model for Predicting the Bearing Capacity of Strip Footing on Multi-layered Cohesive Soil", Computers and Geotechnics, Vol. 36, Pp. 503-516, (2009).
22. N. N., Ambraseys, K. U., Simpson, and J. J.U Bommer, "Prediction of Horizontal Response Spectra in Europe", Earthquake Engineering & Structural Dynamics, Vol. 25, Pp. 371-400, (1996).
CAPTCHA Image