مقایسه طیفهای پاسخ غیرخطی سیستم‌های الاستوپلاستیک حاصل از دو روش درونیابی تحریک

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده فنی و مهندسی گروه عمران، دانشگاه قم، قم، ایران

چکیده

در این مقاله، طیف‌های پاسخ غیر خطی شبه­شتاب سیستم‌های الاستوپلاستیک با شکل­پذیری ثابت برای شتاب‌نگاشت السنترو که با روش درون‌یابی خطی تحریک و نیز با استفاده از تابع اسپلاین مکعبی به دست آمده بود، با یکدیگر مقایسه شده است. طیف‌های پاسخ غیر خطی برای شکل­پذیری‌های 1، 5/1، 2، 4 و 8 محاسبه شدند. برای بررسی جزئی­تر، فاصله زمانی بین نقاط شتاب‌نگاشت‌ها به ترتیب به 2، 5، 10، 20، 50 و 100 قسمت مساوی تقسیم گردیدند و شتاب‌نگاشت‌های جدیدی یک بار با استفاده از درون‌یابی خطی و یک بار با استفاده از درون‌یابی اسپلاین تولید گردید و طیف‌های پاسخ غیر خطی این دو نوع شتاب‌نگاشت با یکدیگر مقایسه شدند. نتایج کار حاکی از این موضوع بود که مقادیر بیشینه و کمینه اختلاف مقادیر قابل ملاحظه­ای داشتند. علاوه بر این، در بیشتر موارد مقدار بیشینه اختلاف بزرگ‌تر از مقدار قدر مطلق کمینه اختلاف متناظرش بود. عمده اختلافات مربوط به دوره تناوب‌های زیر 3/0 ثانیه بود هر چند موارد نقض نیز مشاهده گردید. منظور از مقادیر بیشینه و کمینه اختلاف این است که یک بار طیف الاستوپلاستیک با استفاده از فرض درون‌یابی خطی تحریک محاسبه گردید و این طیف به عنوان مبنای مقایسه در نظر گرفته شد و در مرتبه دوم، طیف الاستوپلاستیک با فرض درون‌یابی اسپلاین تحریک محاسبه شد و بعد این طیف اخیر با طیف مبنا مقایسه گردید. مقادیر بیشینه طیفی به دست آمده از روش درون‌یابی اسپلاین تحریک در قریب به اتفاق موارد بیشتر از مقادیر متناظر بیشینه طیفی به دست آمده از روش درون‌یابی خطی تحریک بود که در بازه 03/0 تا 3/0 ثانیه اتفاق می افتاد و بازه بزرگ‌نمایی شتاب در روش درون‌یابی اسپلاین وسیع‌تر از روش درون‌یابی خطی بود.

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of Nonlinear Response Spectra of Elastoplastic Systems Resulting from Two Excitation Interpolation Methods

نویسندگان [English]

  • masoud mahmoudabadi
  • Seyyed Mohammad Javad hosseiny
Department of Civil Engineering, University of Qom, Qom, Iran.
چکیده [English]

In this paper, the non-linear response spectra of elastoplastic systems with constant ductility for three accelerograms which were obtained by linear interpolation method of excitation and also by using cubic spline function are compared with each other. Non-linear response spectra were calculated for ductility of 1, 1.5, 2, 4 and 8. For a more detailed analysis, the time interval between the accelerogram points was divided into 2, 5, 10, 20, 50 and 100 equal parts, respectively, and new accelerograms were produced once using linear interpolation and once using spline interpolation, and the non-linear response spectra of these two types of accelerograms were compared. The results of the work indicated that the maximum and minimum values had significant values. In addition, in most cases, the maximum value of the difference was greater than the absolute value of the corresponding minimum difference. Also, in most periods, the spectral values did not differ much, but in small periods, which are related to stiff structures, the amount of difference was significant.

کلیدواژه‌ها [English]

  • Linearly interpolated excitation
  • Cubic spline interpolation function
  • elastoplastic mass-spring-damper system
  • Constant-ductility response spectrum
  1.  
  1. C. Chapra, and R. P. Canale, Numerical Methods for Engineers, Fifth Edition,McGraw-Hill, New York, 2006.
  2. L. Burden, and J. D. Faires, NumericalAnalysis, Ninth Edition, Books/Cole, 2011.
  3. Naeim, “Respnse of Instrumented Buildings to 1994 Northridge Earthquake,” Draft Report CSMIP, 1996.
  4. Vamvatsikos, D., and Cornell, C. A., “Applied Incremental Dynamic Analysis,”EarthquakeSpectra, 20, no. 2, pp. 523–553, May 2004.
  5. Yu, R. Wang, and C. Zhu, “A Numerical Method for Solving KdV Equation with Multilevel Bspline Quasi-interpolation,” Applicable Analysis, vol. 92, no. 8, pp. 1682-1690, 2013.
  6. Shojaee, S. Rostami, and A. Abbasi, “An Unconditionally Stable Implicit Time Integration
    Algorithm: Modified Quartic B-Spline Method,” Computers and Structures, vol. 153, pp. 98-111,

    2015.
  7. Saffari, S. Shojaee, S. Rostami, and M. Malekinejad, “Application of Cubic Spline on Large
    Deformation Analysis of Structures,” International Journal of Steel Structures, vol. 14, no.1, pp.
    165-172, 2014.
  8. Rostami, and S. Shojaee, “A Family of Cubic B-Spline Direct Integration Algorithms with
    Contorllabe Numerical Dissipation and Dispersion for Structural Dynamics,” Iranian Journal of
    Science and Technology, Transactions of Civil Engineering, vol. 42, pp. 17-32, 2017.
  9. Mohammadi Nia, S. Shojaee, and S. Hamzehei-Javaran, “A Mixed Formulation of B-Spline
    and a New Class of Spherical Hankel Shape Functions for Modeling Elastostatic Problems,” Applied
    Mathematical Modelling, vol. 77, pp. 602-616, 2020.
  10. H. Mahdavi, H. A. Razak, S. Shojahee, and M. S. Mahdavi, “A Comparative Study on
    Application of Chebyshev and Spline Methods for Geometrically Non-linear Analysis of Truss
    Structures,” International Journal of Mechanical Sciences, vol. 101-102, pp. 241-251, 2015.
  11. Ghazanfari, S. Hamzehei-Javaran, A. Alesadi, and S. Shojaee, “Free Vibration Analysis of
    Cross-Ply Laminated Beam Structures using Refined Beam Theories and B-Spline Basis Functions,”
    Mechanics of Advanced Materials and Structures, pp. 467-475, 2021.
  12. Rostami, and S. Shojaee, “Development of a Direct Integration Method on Quartic B-Spline
    Collocation Method,” Iranian Journal of Science and Technology, Transactions of Civil Engineering,
    vol. 43, pp. 615-636, 2019.
  13. Shahmorad, and A. Abdollahi, “A Quadrature Free Convergent Method for the Numerical
    Solution of Linear Fredholm Integral Equations Based on Hermite-Spline Interpolation,” Proceeding
    in Applied Mathematics and Mechanics, vol. 7, Issue 1, pp. 41-42, 2007.
  14. Maleknejad, and H. Derili, “Numerical Solution of Hammerstein Integral Equatins by using
    Combination of Spline-Collocation Method and Lagrange Interpolation,” Applied Mathematics and
    Computation, vol. 190, no. 2, pp. 1557-1562, 2007.
  15. Maleknejad, and H. Derili, “Numerical Solution of Integral Equatins by using Combination of
    Spline-Collocation Method and Lagrange Interpolation,” Applied Mathematics and Computation, vol.
    175, no. 2, pp. 1235-1244, 2006.
  16. W. Liu, R. S. Chen, and J. Q. Chen, “Adaptive Sampling Cubic-Spline Interpolation Method
    for Efficient Calculation of Monostatic RCS,” Microwave and Optical Technology Letters, vol. 50,
    no 3, pp. 751-755, 2008
    .
  17. S. Zhernakov, V. P. Pavlov, and V. M. Kudoyarova, “The Enhanced Spline-Method for Numerical Results of Natural Frequencies of Beams,”Procedia Engineering, vol. 176, pp. 438-450, 2017.
  18. Hanselman, and B. Littlefield, Mastering MATLAB, A Comprehensive Tutorial and Reference, First Edition, Prentice-Hall, 1996.
  19. K. Chopra, Dynamics of Structures, Theory and Applications to Earthquake Engineering, Fourth Edition, Prentice-Hall, 2012.

 

CAPTCHA Image