##plugins.themes.bootstrap3.article.main##

علی حاجی هاشمی داوود مستوفی نژاد مجتبی ازهری

چکیده

مقاله‌ی حاضر تحقیقی است در مورد مقاوم‌سازی تیرهای بتنی با استفاده از تسمه‌های CFRP که در شیارهایی که از قبل در پوشش بتنی تیرها ایجاد شده‌اند کار گذاشته می‌شوند. این روش دارای مزایای بسیاری است و در مقایسه با روش چسباندن مصالح FRP روی سطح خارجی اعضای سازه‌ای، امکان انتقال مؤثرتر تنش‌های نرمال و برشی بین مقاوم‌کننده‌ها و سازه را فراهم می‌کند. در این مقاله مزایای این روش از نظر ظرفیت باربری، سرویس‌دهی و استفاده‌ی سطح بالاتر از ظرفیت مصالح FRP در مقایسه با شیوه‌ی معمول چسباندن این مصالح روی سطح اجزای سازه‌ای، از نظر تحلیلی و عملی، مورد بررسی قرار گرفته است. به این منظور پنج عدد تیر بتن مسلح ساده در آزمایشگاه سازه‌ی دانشگاه صنعتی اصفهان مورد آزمایش قرار گرفته‌اند. از این تعداد، یک تیر به‌صورت نمونه‌ی تقویت‌نشده (مبنا)، یک تیر به‌صورت تقویت‌شده‌ی غیر پیش‌تنیده، و سه نمونه‌ی دیگر به‌صورت تقویت شده‌ی پیش‌تنیده تا سطح پنج، بیست و سی درصد کرنش نهایی اسمی تسمه‌های CFRP مورد آزمایش قرار گرفته‌اند. نتایج آزمایش‌ها حاکی از آن است که تیرهای پیش‌تنیده مقادیر بالاتری از بار ترک خوردگی و بار تسلیم را در مقایسه با نمونه‌ی تقویت‌شده‌ی غیر پیش‌تنیده نشان می‌دهند. در این تحقیق بار ترک‌خوردگی در تیرهایی که تا سطح 5، 20 و 30 درصد ظرفیت اسمی مصالح CFRP پیش‌تنیده شده‌اند، به‌ترتیب تا 117، 5/127 و 5/144 درصد بار ترک‌خوردگی در نمونه‌ی مبنا افزایش یافتند. در کنار بار ترک‌خوردگی بالاتر، ترک‌های ایجادشده در نمونه‌های تقویت‌شده‌ی پیش‌تنیده، دارای عرض و توزیع محدودتر بوده‌اند. هم‌چنین تیرهای تقویت‌شده‌ی پیش‌تنیده در مقایسه با نمونه‌ی غیر پیش‌تنیده دارای ظرفیت باربری نهایی بیش‌تری بوده و شکست آن‌ها متناظر با خیزهای کوچک‌تری بوده است؛ به‌طوری که ظرفیت باربری نهایی در تیرهایی که تا سطح 5، 20 و 30 درصد ظرفیت اسمی مصالح CFRP پیش‌تنیده شده‌اند، به‌ترتیب 5/11، 7/14 و 0/15 درصد نسبت به نمونه‌ی مبنا افزایش یافتند.

جزئیات مقاله

مراجع
1. Macgregor, J. G., "Reinforced Concrete Mechanics and Design", 3rd ed., Prentice Hall, (1997).
2. Alfarabi Sharif, G. J., Alsuleimani, J. A., Basunbul, M. H., and Ghaleb, N., “Strengthening of initially loaded concrete beams using FRP plates”, ACI Struct. J., 92(2), pp. 160-168, (1994).
3. ACI Committee 440, "Guide for The Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures", ACI Technical Report, (2002).
4. Mostofinejad, D., "An overview on FRP reinforced concrete as a corrosion resistant element in off-shore structures", Proc. of 4th Int. Con. on Costs, Ports and Marine Structures, ICCPMAS 2000, Iran, Nov., (2000).
5. Khalifa, A., Alkhradji, T., Nanni, A., and Landberg, S., "Anchorage of surface mounted FRP reinforcement", Conc. Int., 21(10), pp. 49-54, (1999).
6. Barros, J. A. O., and Fortes, A. S., "Flexural strengthening of concrete beams with CFRP laminates bonded into slits", Cem. and Conc. Comp., 27, pp. 471-480, (2005).
7. Apslund, S. Q., "Strengthening bridge slabs with grouted reinforcement" ACI Struct. J., 52(6), pp. 397-406, (1949).
8. Hajihashemi, A., Mostofinejad, D., and Azhari, M, "Strengthening of RC structures using anchored prestressed near surface mounted FRP bars", Proc. of ECCOMAS Thematic Conf. on Computational Methods in Structural and Earthquake Engineering, pp. 1023-1035, Greece, June, (2007).
9. De Lorenzis, A., and Nanni, A., "Shear strengthening of reinforced concrete beams with near surface mounted FRP bars", ACI Struct. J., 98(1), pp. 60-68, (2001).
10. De Lorenzis, A., and Teng, G. J., "Near surface FRP reinforcement: an emerging technique for strengthening structures", Comp. Part B: Eng., 38, pp. 119-143, (2007).
11. Micelly, F., La Tegola, A., and Myers, J. J., "Environmental effects on RC beams with near surface mounted FRP rods", Proc. of 6th Int. Symp. on FRP Reinforcement for Concrete Structures, FRPRCS-6, Vol. 2, pp. 749-758, Singapore, July, (2003).
12. Carolin, A., Hordin, H., and Taljsten, B., "Concrete beams strengthened with near surface mounted reinforcement of CFRP", Proc. of Int. Conf. on FRP Composites In Civil Eng., CICE, Vol. 2, pp. 1059-1066, Hong Kong, China, Dec., (2001).
13. Tang, W. C., Balendran, R. V., Nadeem, A., and Leung, H. Y., "Flexural strengthening of reinforced light weight polystyrene aggregate concrete beams with near surface mounted GFRP bars", Build. and Envir., 41, pp.1381-1393, (2006).
14. Barros, J. A. O., Ferreira, D. R. S., Fortes, A. S., and Dias, S. J. E., "Assessing the effectiveness of embedding CFRP laminates in the near surface for structural strengthening", Const. and Build. Mat., 20, pp. 478-491, (2006).
15. Foret, G., and Limam, O., "Experimental and numerical analysis of RC two-way slabs strengthened with NSM CFRP rods", Const. and Build. Mat., 22, pp. 80-86, (2006).
16. Tumialan, G., Nanni, A., and Busel, J., "Retrofitting techniques for seismic upgrade of unreinforced masonry (URM) structures", e-article: GoStructural.com, ID=224, (2006).
17. Badavi, M., Vahab, N., and Soudki, Kh., "Evaluation of the transfer length of prestressed near surface mounted CFRP rods in Concrete", Const. and Build. Mat., 25, pp. 1474-1479, (2012).
18. Nordin, H., and Taljsten, B., "Concrete beams strengthened with prestressed NSM CFRP", ASCE J. of Comp. for Const., 10(1), pp. 60-68, (2006).
19. El Hacha, R., Wight, R. G., and Green, M. F., "Innovative system for prestressing FRP sheets", ACI Struct. J., 100(3), pp.305-315, (2003).
20. Carolin, A., Carbon Fiber Reinforced Polymers for Strengthening of Structural Elements, Doctoral Theses, Lulea University of Technology, Lulea, Sweden, (2000).
21. Garden, H. N., and Hollaway, L. C., "An experimental study of the failure modes of reinforced concrete beams strengthened with carbon composite plates", Comp. Part B: Eng., 29, pp. 411-424, (1998).
22. Triantafillou, T. C., and Deskovic, N., "Innovative prestressing with FRP sheets: mechanics of short-term behavior" J. of Eng. Mech., 117, pp. 1652-1672, (1991).
23. De Lorenzis, L., Nanni, A., and La Tegola, A., "Flexural and shear strengthening of reinforced concrete structures with near surface mounted FRP rods", Proc. of the 3rd Int. Conf. on Advanced Composite Materials In Bridges and Structures, CSCE, pp. 521-528, Ottawa, Canada, (2000).
24. El-Hacha, R., Wight, G., and Green, M., "Long-term behavior of concrete beams strengthened with prestressed CFRP sheets at room and low temperatures", Proc. of Conf. on Concrete under Severe Conditions-Environmental and Loading, pp. 1817-1826, UBC, Vancouver, Canada, (2001).
25. Meier, U., and Stocklin, I., "Computer controlled adhesion of prstressed CFRP strips", Proc. of Beijing Bonding Technology Symp., pp. 041/2-041/5, China, (2004).
26. Wight, G., and Erki, M. A., "Prestressed CFRP for strengthening concrete slabs in fatigue" Proc. of Int. Conf. On FRP Composites in Civil Engineering, University of Hong Kong, Hong Kong, (2001).
27. Wight, G., and Erki, M. A., "CFRP strengthening of severely damaged reinforced concrete slabs", Proc. of Conf. on Concrete under Severe Conditions-Environmental and Loading, pp. 2191-2198, UBC, Vancouver, Canada, (2001).
28. Triantafillou, T. C., Descovic, N., and During, M., "Strengthening of concrete structures with prestressed fiber reinforced plastic sheets", ACI Struct. J., 89(3), pp. 235-244, (1992).
29. Saadatmanesh, H., and Ehsani, M., "RC beams strengthened with GFRP plates: Part I: experimental study", ASCE J. of Comp. for Const., 117(11), pp. 3417-3433, (1991).
30. Wight, G., Green, M., and Erki, M. A., "Prestressed FRP Sheets for post-strengthening Reinforced Concrete Beams", ASCE J. of Comp. for Const., 5(4), pp. 214-220, (2001).
31. Badavi, M., and Soudki, Kh., "Flexural strengthening of RC beams with prestressed NSM CFRP rods - experimental and analytical investigation", Const. and Build. Mat., 23, pp. 3292-3300, (2009).
32. ACI Committee 209, "Prediction of Creep, Shrinkage, and Temperature Effects in Concrete Structures", American Concrete Institute, Farmington Hills, Michigan, (2002).
33. ASTM A370-96, "Standard Test Methods and Definitions for Mechanical Testing of Steel Products", Annual Book of ASTM Standard, Vol. 01.05, pp. 381-384, (1997).
34. ASTM D3039-95a, "Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials", Annual Book of ASTM Standard, Vol. 13.03, pp. 98-108, (1997).
35. ACI Committee 440, "Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures", American Concrete Institute, Farmington Hills, Michigan, (2002).
36. Oudah, F., and Raafat, E.H., "A new ductility model of reinforced concrete beams strengthened using fiber reinforced polymer reinforcement", Comp. Part B: Eng., 43, pp. 3238-3347, (2012).
ارجاع به مقاله
حاجی هاشمی ع., مستوفی نژاد د., & ازهری م. (2015). بررسی تجربی و تحلیلی رفتار تیرهای بتن‌آرمه ی تقویت‌شده با تسمه‌های CFRP پیش‌تنیده به روش NSM. فصلنامه مهندسی عمران فردوسی, 26(1), 1-24. https://doi.org/10.22067/civil.v26i1.44035
نوع مقاله
پژوهشی