تأثیر نسبت محلول قلیایی به سرباره بر نفوذپذیری بتن قلیا‌فعال سربارهای

نوع مقاله : پژوهشی

نویسندگان

1 دانشگاه صنعتی اصفهان

2 صنعتی اصفهان

چکیده

در این تحقیق، تأثیر نسبت محلول قلیایی به سرباره بر نفوذپذیری بتن قلیا‌فعال سرباره‌ای با آزمایش‌های مختلف مورد تحلیل و بررسی قرار گرفت. امروزه نقش بتن به‌عنوان پرمصرف‌ترین مصالح ساختمانی، در توسعۀ زیرساخت‌های عمرانی و اقتصادی جوامع امری انکارناپذیر است. یکی از راهکارهای تولید بتنی سازگار با محیط زیست و کاهش اثرات مخرب مرتبط با تولید سیمان پرتلند، استفاده از بتن قلیافعال سرباره‌ای می‌باشد که از طریق فعال‌سازی خاصیت چسبندگی سربارۀ کورۀ بلند در یک محلول قلیایی تولید می‌شود. ازآنجاکه نفوذپذیر بودن بتن در پایایی و دوام آن نقش مؤثری دارد، در این تحقیق با متغیر در‌نظر گرفتن نسبت محلول قلیایی به سرباره، پارامترهای نفوذ یون کلر به‌روش RCPT، عمق نفوذ آب، جذب آب کوتاه‌مدت و نهایی و مقاومت فشاری به‌دست می‌آید. مقادیری که برای نسبت محلول قلیایی به سرباره در‌نظر گرفته شد، 4/0 ، 45/0، 5/0 و 55/0 می‌باشد؛ یک طرح با سیمان پرتلند معمولی به‌عنوان طرح کنترل برای مقایسه و ارزیابی با بتن قلیا‌فعال سرباره‌ای ساخته شد. همچنین بااستفاده از عکس‌برداری با میکروسکوپ الکترونی روبشی (تست SEM) مقایسه‌ای ساختاری بین بتن قلیا‌فعال سرباره‌ای و بتن با سیمان پرتلند معمولی انجام شد. نتایج نشان داد که نسبت محلول قلیایی به سرباره 45/0 و 5/0 برای تولید بتن قلیا‌فعال سرباره‌ای از لحاظ دوام و نفوذپذیری مقادیر بهینه‌ای می‌باشند.

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of Alkaline Solution-to-Slag Ratio on Permeability of Alkali Activated Slag Concrete

نویسندگان [English]

  • Kiachehr Behfarnia 1
  • Majid Rostami 2
1 Isfahan University of Technology
2 IUT
چکیده [English]

This study investigated the effect of alkaline solution-to-slag ratio on permeability of Alkali-Activated Slag Concrete (AASC). Concrete, as the most widely used building material, has an undeniably important role in development of economic and civic infrastructure. Alkali activated slag cement is an environmentally friendly alternative to Portland cement, which can be produced by using an alkaline solution to activate the binding effect of the blast furnace slag. Permeability of concrete has a direct impact on its durability, so in this study a series of tests were arranged to examine the effect of alkaline solution-to-slag ratio on water impermeability, chloride permeability, short-term and total water absorption and compressive strength of AASC specimens. In experimental study four concrete mixes with alkaline solution-to-slag ratios of 0.4, 0.45, 0.50, and 0.55 were considered. One mix made by ordinary Portland cement were also considered for comparison of results. In addition, The images taken from samples AASC and Ordinary Portland Cement Concrete (OPCC) by means of scanning electron microscopy (SEM) were used to study the comparison of microstructure. The results showed that the alkaline solution/slag ratios of 0.45 and 0.50 are the optimum values for AASC production from the durability and permeability point of view.

کلیدواژه‌ها [English]

  • Alkali Activated
  • Slag
  • alkaline solution
  • permeability
1. Behfarnia, K., Behravan, A., "Application of High Performance Polypropylene Fibers in Concrete Lining of Water Tunnels", Materials & Design, Vol. 55, pp. 274-279, (2014).
2. Malhotra,V.M. And Mehta, P.K., "High-performance, High-volume Fly Ash Concrete: Materials, Mixture, Proportioning, Properties, Construction Practice, and Case Histories", Ottawa, Canada, Supplementary Cementing Materials for Sustainable Development Inc, (2005).
3. Rangan, B.V. And Hardjto, D., "Development and Properties of Low Calcium Fly Ash Based Geopolymer Concrete", Research report GC-1, Faculty of Engineering, Curtins University of Technology, Perth, Australia, (2005).
4. Palomo, A., Fernandez-Jimenez, A., Lopez Hombrados, C. and Lleyda, J.L., "Railway Sleepers Made of Alkali Activated Fly Ash Concrete", Revista Ingenieria, Vol. 22, pp. 75-80, (2007).
5. Gartner, E., "Industrially Interesting Approaches to Low CO2 Cements", Cem. Concr. Res., Vol. 34, pp. 1489–1498, (2004).
6. Davidovits, J., "Global Warming Impact on the Cement and Aggregate Industries", World Resour. Rev, Vol. 6, pp. 263–278, (1994).
7. Junaid, M.T., Khennane, A., Kayali, O., Sadaoui, A., Picard, D., Fafard, M., "Aspects of the Deformational Behaviour of Alkali Activated Fly Ash Concrete at Elevated Temperatures", Cement and Concrete research, Vol. 60, pp. 24-29,(2014).
8. Delatte, J.A.F.G., "From Ancient Concrete to Geopolymers", Arts Metiers Mag., Pp. 8-16, (1993).
9. Juenger, M., Winnefeld, F., Provis, J. and Ideker, J., "Advances in Alternative Cementitious Binders", Cement and concrete research, Vol. 41, pp. 1232-1243, (2011).
10. Shojaei, M., Behfarnia, K. and Mohebi, R., "Application of Alkali-activated Slag Concrete in Railway Sleepers", Materials & Design, Vol. 69, pp. 89-95, (2015).
11. Mohebi, R., Behfarnia, K. and Shojaei, M., "Abrasion Resistance of Alkali-activated Slag Concrete Designed by Taguchi Method", Construction and Building Materials, Vol. 98, pp.792-798, (2015).
12. احمدی. سارا، نورانیان. حسین، «سیمان سرباره‌ای قلیا‌فعال»، فصلنامۀ سرامیک ایران، ش. 19و 22، پاییز و زمستان (1388).
13. Shi, Z., Shi, C., Zhao, R. and Wan, S., "Comparison of Alkali–silica Reactions in Alkali-activated Slag and Portland Cement Mortars", Materials and Structures, Vol. 48, pp. 743-751, (2015).
14. Rashad, A.M., Zeedan, S.R. and Hassan, A.A., "Influence of the Activator Concentration of Sodium Silicate on the Thermal Properties of Alkali-activated Slag Pastes", Construction and Building Materials, Vol. 102, pp. 811-820, (2016).
15. Rashad, A.M., Sadek, D.M. and Hassan, H.A., "An Investigation on Blast-furnace Stag as Fine Aggregate in Alkali-activated Slag Mortars Subjected to Elevated Temperatures", Journal of Cleaner Production,Vol. 112, pp.1086-1096, (2016).
16. Türker, H.T., Balçikanli, M., Durmuş, İ.H., Özbay, E. and Erdemir, M., "Microstructural Alteration of Alkali Activated Slag Mortars Depend on Exposed High Temperature Level", Construction and Building Materials, Vol.104, pp.169-180, (2016).
17. Turkmen, I., Maras, M.M., Karakoc, M.B., Demirboga, R. and Kantarci, F., "Fire Resistance of Geopolymer Concrete Produced from Ferrochrome Slag by Alkali Activation Method", International Conference on Renewable Energy Research and Applications (ICRERA), pp. 58-63, (2013).
18. Karakoç, M.B., Türkmen, İ., Maraş, M.M., Kantarci, F., Demirboğa, R. and Toprak, M.U., "Mechanical Properties and Setting Time of Ferrochrome Slag based Geopolymer Paste and Mortar", Construction and Building Materials, Vol. 72, pp.283-292, (2014).
19. Karakoç, M.B., Türkmen, İ., Maraş, M.M., Kantarci, F. and Demirboğa, R., "Sulfate Resistance of Ferrochrome Slag based Geopolymer Concrete", Ceramics International, Vol. 42, pp.1254-1260, (2016).
20. رمضانیانپور. علی‌اکبر، شاه نظری. محمدرضا، «تکنولوژی بتن»، انتشارات علم و صنعت 110 و انتشارات پرهام، تهران، (1390).
21. . Chen, W., Brouwers, H.J.H., "The Hydration of Slag, Part 1: Reaction Models for Alkali-activated Slag" , Journal of materials science, Vol. 42, pp. 428–443, (2007).
22. Bilim C., Karahan O., Atis C.D., Ilkentapar S., "Influence of Admixtures on the Properties of Alkali-activated Slag Mortars Subjected to Different Curing Conditions", Materials & Design, Vol. 44,
pp. 540–547, (2013).
23. Bakharev, T., Sanjayan, J.G., Cheng, Y.B., "Resistance of Alkali-activated Slag Concrete to cid ttack", Cement and Concrete research, Vol. 33, pp. 1607–1611, (2003).
24. Bakharev, T., Sanjayan, J.G., Cheng, Y.B., "Sulphate Attack on Alkali-activated Slag Concrete", Cement and Concrete research, Vol. 32, pp. 211–216, (2002).
25. Puertas, F., Fernandez-Jimenez, A., "Mineralogical and Microstructural Characterization of Alkali-activated Fly Ash/Slag Pastes", Cement and Concrete composites, Vol. 25, pp. 287–292, (2003).
26. Roy, D.M., Jiang, W., Silsbee, M.R., "Chloride Diffusion in Ordinary, Blended, and Alkali-activated Cement Pastes and its Relation to Other Properties", Cement and Concrete research, Vol. 30, pp. 1879–1884, (2000).
27. Türkmen, İ., Karakoç, M.B., Kantarcı, F., Maraş, M.M. and Demirboğa, R., "Fire Resistance of Geopolymer Concrete Produced from Elazığ Ferrochrome Slag", Fire and Materials, (2016).
28. Davidovits, J., "Geopolymers", Journal of Thermal Analysis and Calorimetry, Vol. 37, pp. 1633-1656, (1991).
29. Rashad, A.M., "A Comprehensive Overview about the Influence of Different Admixtures and Additives on the Properties of Alkali-activated Fly Ash", Materials & Design, Vol. 53, pp. 1005-1025, (2014).
30. Balcikanli, M. and Ozbay, E., "Optimum Design of Alkali Activated Slag Concretes for the Low Oxygen/Chloride Ion Permeability and Thermal Conductivity", Composites Part B: Engineering, Vol. 91, pp. 243-256, (2016).
31. Xu, H., Provis, J.L., van Deventer, J.S. and Krivenko, P.V., "Characterization of Aged Slag Concretes", ACI Materials Journal, Vol. 105, pp. 131-139, (2008).
32. ASTM C33., "Standard Specification for Concrete Aggregates", Annual Book of ASTM Standards, (2003).
33. ASTM C127., "Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate", Annual Book of ASTM Standards, Philadelphia, (2003).
34. ASTM C 143., "Standard Test Method for Slump of Hydraulic Cement Concrete", Annual Book of ASTM Standards, (2003).
35. EN 12390-3., "Testing Hardened Concrete – Part 3: Compressive Strength of Test Specimens", (2002).
36. ASTM C 642., "Standard Test Method for Density, Absorption, and Voids in Hardened Concrete", Annual Book of ASTM Standards, Philadelphia, (2003).
37. مرکز تحقیقات ساختمان و مسکن، «نشریۀ شمارۀ ض-428: آیین‌نامۀ ملی پایایی بتن در محیط خلیج فارس و دریای عمان»، چاپ اول، تهران، ایران، (1385).
38. ASTM C 1202., "Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration", Annual Book of ASTM Standards, Philadelphia, (2003).
39. EN 12390-8., "Testing Hardened Concrete - Part 8: Depth of Penetration of Water Under Pressure", European Committee for Standardization, (2000).
CAPTCHA Image