مطالعۀ آزمایشگاهی تأثیر دیوارۀ جانبی بر ابعاد گودال آبشستگی در پایین‌دست کالورت

نوع مقاله : پژوهشی

نویسندگان

شیراز

چکیده

 آبشستگی موضعی در خروجی کالورت­ پدیده­ای متداول است؛ لذا ارائۀ راهکارهای مقابله با این پدیدۀ مخرب ضروری می­باشد. در مطالعۀ حاضر تأثیر دیوارۀ جانبی پایین­دست کالورت بر ابعاد گودال آبشستگی موضعی با درنظر گرفتن دیواره­هایی با زوایای 15، 30، 45، 60 و 75 درجه نسبت به خط مرکزی جریان، در دو تیپ‌ هیدرولیکی 1 و 4 و در دو کالورت با مقطع دایره‌ای و مستطیلی بررسی شد. نتایج نشان داد که استفاده از دیواره با زاویه 15 درجه باعث کاهش عمق و طول گودال آبشستگی و همچنین ارتفاع رسوب‌گذاری در پایین­دست می­شود که میزان کاهش عمق آبشستگی در کالورت مستطیلی با تیپ 1 هیدرولیکی به‌میزان %3/35  نسبت به تست شاهد مشاهده شد. همچنین دیواره با زاویه 30 درجه در مقطع مستطیلی با تیپ 1، با کاهش 46% آبشستگی عملکرد خوبی را نشان داده‌است. دیواره‌های جانبی با زاویه 60 و 75 درجه، عملکرد مناسبی در کاهش آبشستگی نشان ندادند. همچنین در تیپ 1، دیواره در همه زوایا باعث کاهش عمق آبشستگی شد؛ اما در تیپ 4 فقط در زاویۀ 15 درجه عمق آبشستگی به‌میزان 30% در مقطع دایره‌ای و 10% در مقطع مستطیلی کاهش پیدا کرد. همچنین ابعاد گودال آبشستگی در پایین­دست کالورت با مقطع دایره­ای بیشتر از مقطع مستطیلی مشاهده شد؛ به‌گونه­ای که در مقطع دایره­ای در تیپ 1 هیدرولیکی، عمق آبشستگی به‌میزان 35% نسبت به مستطیلی افزایش داشته‌است که این در تیپ 4 هیدرولیکی به‌میزان 95% مشاهده شد. همچنین ابعاد گودال آبشستگی در تیپ 1 نسبت به تیپ 4 در همه زوایا بیشتر می­باشد و این در حالی است که ارتفاع رسوب‌گذاری در تیپ 4 نسبت به تیپ 1 بیشتر می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Experimental Investigation on the Effect of Wing Walls on Scour Hole’s Dimensions Downstream of Culvert

نویسندگان [English]

  • Hameideh Ghafari
  • Fatemeh Sadati
Shiraz University
چکیده [English]

Local scour at the culvert outlet is common event. In this study the effect of different angles of wing walls flare on scour in hydraulic conditions for type 1 and 4 flows at downstream of circular and box culvert investigated. Wing walls flare 15, 30, 45, 60 and 75- degrees to the outlet centerline were considered in this study. Result showed 15- degree flare wing walls reduced scour depth, scour length and mound height. So, 15- degree flare wing wall in box culvert and type1 flow reduced scour equal 35.3% to the control test. Also, 30- degree flare wing walls in box culvert and type1 flow has shown a good performance in reducing scour depth equal 46%. Wing walls flare angle 60 and 75- degree, did not have good performance in reducing scour depth at downstream of culverts. In type 1 flow, scour can be reduced by using of wing walls with any angles. In type4 flow, only 15- degree wing walls flare reduced maximum scour depth equal 30% in circular culvert and 10% in box culvert. Also, the dimensions of the scour hole on downstream of the circular culvert is more than box culvert. So, in the circular culvert and type 1, scour depth increased equal 35% compared to box culvert and it was observed equal 95% in type-4 flow. The dimensions of the scour hole in type 1 flow is higher than type 4 at all angles, while the mound height in type 4 is higher than type 1 flow.

کلیدواژه‌ها [English]

  • Local Scour
  • Culvert
  • Wing Wall
1. حسینی، س.م.، ابریشمی، ج.، «هیدرولیک کانال‌های باز»، چاپ بیست و هفتم، تعداد صفحات: 613، انتشارات دانشگاه فردوسی مشهد، (1390).
2. Chow, V. T., "Open Channel Hydraulic", Mc Graw. Hill Book Company, Ing, (1959).
3. Yoo, D. H. and Lee, S., "Direct Determination of the Width or Height for a Box Culvert Applying Dimensionless Equations", KSCE Journal of Civil Engineering, Vol. 16, No. 7, pp. 1302-1307, (2012).
4. Zevenbergen, L. W., Arneson, L. A., Hunt, J. H. and Miller, A. C., "Hydraulic Design of Safe Bridge", U.S. Department of Transportation, FHWA-HIF-12-018, (2012).
5. Abida, H. and Townsend, R. D., "Local Scour Downstream of Box-Culvert Outlets", Journal of Irrigation and Drainage Engineering, Vol. 117, No. 3, pp. 425-440, (1991).
6. Abt, S. R., Ruff, J. F., Doehring, F. K. and Donnell, C. A., "Influence of Culvert Shape on Outlet Scour", Journal of Hydraulic Engineering, Vol. 113, No. 3, pp. 393-400, (1987).
7. Abt, S. R., Kolberdanz, R. L. and Mendoza, C., "Unified Culvert Scour Determination", Journal of Hydraulic Engineering, Vol. 110, No. 10, pp. 1475-1479, (1984).
8. Crookston, B. M. and Tullis, B. P. M., "Scour Prevention in Bottomless Arch Culvert", International Journal of Sediment Research, Vol. 27(2), pp. 213-225, (2012).
9. Kerenyi, K., Jones, J. S. and Stein, S., "Bottomless Culvert Scour Study: Phase 2 Laboratory Report, FHWA-HRT-07-026, Federal Ighway Administration, D.C, (2007).
10. Thampson, P. L. and Klingore, R. T., "Hydraulic Design of Energy Dissipators for Culverts and Channels", Federal Highway Administration, D.C. FHWA-NHI-06-086, (2006).
11. Hydraulic Design of Energy Dissipators for Culverts and Channels. US department of transportation- federal highway transportation, Hydraulic Engineering Circular No. 14, Third Edition, (2006).
12. شفاعی بجستان، م.، «هیدرولیک رسوب»، چاپ سوم، تعداد صفحات: 470، انتشارات دانشگاه شهید چمران اهواز، (1384).
13. Kumar, V., Vittal, N. and Ranga Raju, K. G., "Reduction of Scour around Bridge Piers Using Slots and Collars", Journal of Hydraulic Engineering, Vol. 125, No. 12, pp. 1302-1305, (1999).
14. Drainage Design Manual., Colorado Department of Transportation, (2017).
15. ساداتی، ف.، هاشمی، م.، زمردیان، س.م.ع، «بررسی عددی الگوی جریان در مجرا و پایین‌دست کالورت در حالت مستغرق»، سیزدهمین کنفرانس هیدرولیک ایران، دانشگاه تبریز، (1393).
16. Blaisdel, F .W., "The SAF Stilling Basin," U.S. Government Printing Office, (1959).
17. نجفی، ج.، قدسیان، م.، «بررسی آزمایشگاهی ابعاد حفرۀ آبشستگی پایین‌دست کالورت لوله‌ای»، نشریۀ دانشکدۀ فنی، دورۀ 38، شمارۀ 2، صص. 329 -338، (1383).
CAPTCHA Image