بهینه‌سازی ایزوژئومتریک شکل سازه‌های دوبعدی با استفاده از تحلیل حساسیت کاملا تحلیلی

نوع مقاله : پژوهشی

نویسندگان

گروه مکانیک، دانشکدۀ مهندسی، دانشگاه فردوسی مشهد.

چکیده

در اکثر روش‌های بهینه‌سازی سازه‌ای در تحلیل سازه و محاسبۀ حساسیت از روش اجزای محدود مرسوم استفاده شده است. به دلیل تغییر هندسه در هر مرحله از بهینه‌سازی، برای دست‌یابی به مدل محاسباتی نیاز به تولید شبکۀ اجزای محدود جدیدی است که سبب افزایش هزینه محاسباتی و اتلاف وقت می‌شود. برای مرتفع نمودن مشکلات این‌چنینی، روش تحلیل ایزو ژئومتریک بر مبنای توابع پایه نربز که ترکیبی از روش طراحی به کمک کامپیوتر (CAD) و اجزای محدود است، در اینجا استفاده می‌شود. در بهینه‌سازی شکل سازه‌ها از روش مجانب‌های پویا (MMA) که روشی گرادیان محور است، استفاده شده است. در بهره‌گیری ازاین‌روش نیاز به تحلیل حساسیت طرح نسبت به متغیرهای طراحی است. به همین منظور، با توجّه به ویژگی‌های توابع نربز روش تحلیل حساسیت کاملاً تحلیلی فرمول‌بندی و اجرا شده است. برای نشان دادن عملکرد روش پیشنهادی، مثال‌های عددی گوناگونی حل شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Isogeometric Shape Optimization of 2D Structures Using Fully Analytical Sensitivity Analysis

نویسندگان [English]

  • sajjad nikoei
  • Behroz hasani
Department of Aerospace Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده [English]

In most of the structural optimization approaches analysis and sensitivities are carried out by using the conventional finite element method. Due to the variations of the problem geometry within the shape optimization iterations, updating the computational model by several remeshings is required that is quite time consuming and computationally costly. As a remedy for this problem, the NURBS-based isogeometric analysis method is here adopted that combines the Computer Aided Design (CAD) and finite element techniques. In this study, in the shape optimization of the structures the Method of Moving Asymptotes (MMA), which is a gradient-based method, is employed and to calculate the required sensitivities a fully analytical approach is presented. To demonstrate the performance of the suggested approach, various numerical examples are solved.
 

1. Hassani, B. and Hinton, E., "Homogenization and structural topology optimization: theory, practice and software", Springer Science & Business Media, (2012).
2. Hughes, T.J., Cottrell, J.A., and Bazilevs, Y., "Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement", Computer Methods in Applied Mechanics and Engineering, Vol. 194, pp. 4135-4195, (2005).
3. Bazilevs, Y., Calo, V., Cottrell, J., Hughes, T., Reali, A., and Scovazzi, G., "Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows", Computer Methods in Applied Mechanics and Engineering, Vol. 197, pp. 173-201, (2007).
4. Bazilevs, Y., Calo, V.M., Hughes, T.J., and Zhang, Y., "Isogeometric fluid-structure interaction: theory, algorithms, and computations", Computational Mechanics, Vol. 43, pp. 3-37, (2008).
5. Gomez, H., Calo, V.M., Bazilevs, Y., and Hughes, T.J., "Isogeometric analysis of the Cahn–Hilliard phase-field model", Computer Methods in Applied Mechanics and Engineering, Vol. 197, pp. 4333-4352, (2008).
6. Buffa, A., de Falco, C., and Sangalli, G., "Isogeometric Analysis: new stable elements for the Stokes equation. To appear on Inter", Journal for Numerical Methods in Fluids, Vol. 65, pp. 1407-1422, (2010).
7. Auricchio, F., Da Veiga, L.B., Lovadina, C., and Reali, A., "The importance of the exact satisfaction of the incompressibility constraint in nonlinear elasticity: mixed FEMs versus NURBS-based approximations", Computer Methods in Applied Mechanics and Engineering, Vol. 199, pp. 314-323, (2010).
8. Cottrell, J.A., Reali, A., Bazilevs, Y., and Hughes, T.J., "Isogeometric analysis of structural vibrations", Computer Methods in Applied Mechanics and Engineering, Vol. 195, pp. 5257-5296, (2006).
9. Benson, D., Bazilevs, Y., Hsu, M.-C., and Hughes, T., "Isogeometric shell analysis: the Reissner–Mindlin shell", Computer Methods in Applied Mechanics and Engineering, Vol. 199, pp. 276-289, (2010).
10. نیکویی، سجاد و حسنی، بهروز، " تحلیل استاتیکی و ارتعاش آزاد ایزو ژئومتریک ورق‌های چندلایه کامپوزیتی پوشیده شده از پیزوالکتریک با استفاده از نظریه رایزنر- میندلین "، مجله علمی-پژوهشی مکانیک مدرس، دوره هفدهم، ش. 11، صص 191-181، (1396).
11. Buffa, A., Rivas, J., Sangalli, G., and Vazquez, R., "Isogeometric analysis in electromagnetics: theory and testing", Preprint, (2010).
12. Buffa, A., Sangalli, G., and Vazquez, R., "Isogeometric analysis in electromagnetics: B-splines approximation", Computer Methods in Applied Mechanics and Engineering, Vol. 199, pp. 1143-1152, (2010).
13. Cottrell, J.A., Hughes, T.J., and Bazilevs, Y., "Isogeometric analysis: toward integration of CAD and FEA", John Wiley & Sons, (2009).
14. Zienkiewicz, O. and Campbell, J., "Shape optimization and sequential linear programming", Optimum structural design, pp. 109-126, (1973).
15. Francavilla, A., Ramakrishnan, C., and Zienkiewicz, O., "Optimization of shape to minimize stress concentration", The Journal of Strain Analysis for Engineering Design, Vol. 10, pp. 63-70, (1975).
16. Haftka, R.T. and Grandhi, R.V., "Structural shape optimization—a survey", Computer Methods in Applied Mechanics and Engineering, Vol. 57, pp. 91-106, (1986).
17. Haftka, R. and Gurdal, Z., "Elements of Structural Optimization", Kluwer Academic Publishers, (1992).
18. Imam, M.H., "Three‐dimensional shape optimization", International Journal for Numerical Methods in Engineering, Vol. 18, pp. 661-673, (1982).
19. Botkin, M., "Three-dimensional shape optimization using fully automatic mesh generation", AIAA journal, Vol. 30, pp. 1932-1934, (1992).
20. Younsi, R., Knopf-Lenoir, C., and Selman, A., "Multi-mesh and adaptivity in 3D shape optimization", Computers & Structures, Vol. 61, pp. 1125-1133, (1996).
21. Annicchiarico, W. and Cerrolaza, M., "Structural shape optimization 3D finite-element models based on genetic algorithms and geometric modeling", Finite Elements in Analysis and Design, Vol. 37, pp. 403-415, (2001).
22. Cho, S. and Ha, S.-H., "Isogeometric shape design optimization: exact geometry and enhanced sensitivity", Structural and Multidisciplinary Optimization, Vol. 38, pp. 53, (2009).
23. Wall, W.A., Frenzel, M.A., and Cyron, C., "Isogeometric structural shape optimization", Computer Methods in Applied Mechanics and Engineering, Vol. 197, pp. 2976-2988, (2008).
24. Seo, Y.-D., Kim, H.-J., and Youn, S.-K., "Shape optimization and its extension to topological design based on isogeometric analysis", International Journal of Solids and Structures, Vol. 47, pp. 1618-1640, (2010).
25. Nagy, A.P., Abdalla, M.M., and Gürdal, Z., "Isogeometric sizing and shape optimisation of beam structures", Computer Methods in Applied Mechanics and Engineering, Vol. 199, pp. 1216-1230, (2010).
26. Li, K. and Qian, X., "Isogeometric analysis and shape optimization via boundary integral", Computer-Aided Design, Vol. 43, pp. 1427-1437, (2011).
27. Hassani, B., Tavakkoli, S., and Moghadam, N., "Application of isogeometric analysis in structural shape optimization", Scientia Iranica, Vol. 18, pp. 846-852, (2011).
28. Taheri, A.H. and Hassani, B., "Simultaneous isogeometrical shape and material design of functionally graded structures for optimal eigenfrequencies", Computer Methods in Applied Mechanics and Engineering, Vol. 277, pp. 46-80, (2014).
29. Hassani, B., Tavakkoli, S.M., and Ghasemnejad, H., "Simultaneous shape and topology optimization of shell structures", Structural and Multidisciplinary Optimization, Vol. 48, pp. 221-233, (2013).
30. Lian, H., Kerfriden, P., and Bordas, S.P., "Implementation of regularized isogeometric boundary element methods for gradient‐based shape optimization in two‐dimensional linear elasticity", International Journal for Numerical Methods in Engineering, Vol. 106, pp. 972-1017, (2016).
31. Sun, S., Yu, T., Nguyen, T.T., Atroshchenko, E., and Bui, T., "Structural shape optimization by IGABEM and particle swarm optimization algorithm", Engineering Analysis with Boundary Elements, Vol. 88, pp. 26-40, (2018).
32. Piegl, L. and Tiller, W., "The NURBS book", Springer Science & Business Media, (2012).
33. Svanberg, K., "The method of moving asymptotes—a new method for structural optimization", International Journal for Numerical Methods in Engineering, Vol. 24, pp. 359-373, (1987).
CAPTCHA Image