شناسایی آسیب در مسائل تنش– کرنش مسطح بااستفاده از داده‌های مودال

نوع مقاله : پژوهشی

نویسندگان

دانشگاه ملایر

چکیده

وجود آسیب یا ترک در سازه‌ها باعث تغییر در پارامترهای مودال می‌شود و  فرکانس­های طبیعی و شکل ­مودهای ارتعاشی آنها را تحت تأثیر قرار می‌دهد؛ بنابراین می­توان از تغییر پارامترهای مودال، برای شناسایی آسیب در سازه­ها استفاده نمود. تاکنون بیشتر تحقیقات انجام‌شده در تشخیص آسیب در مسائل یک­بعدی نظیر تیرها  متمرکز بوده‌است و تحقیقات جامعی برای شناسایی آسیب در سازه‌های دوبعدی و بالاتر وجود ندارد. به‌نظر می‌رسد، دلیل این کار مدت‌زمان بسیار زیاد تحلیل درصورت مدل‌سازی با روش اجزای محدود باشد که در این مقاله دو راهکار برای کاهش هزینۀ محاسبات ارائه شده‌است. ابتدا با انجام تحلیل حساسیت از شبکه‌های اجزای محدود درشت‌تری استفاده شده‌است. در راهکار دوم به‌جای استفاده از الگوریتم ژنتیک در مسائل مورد بررسی، از الگوریتم بهینه‌سازی اجتماع ذرات استفاده شده‌است که زمان لازم برای تشخیص آسیب‌ها را کاهش دهد. هدف این تحقیق شناسایی وجود، مکان و شدت آسیب در سازه­های دوبعدی تنش یا کرنش مسطح بااستفاده از ترکیب اطلاعات فرکانس‌های ارتعاشی و شکل مودهای ارتعاشی سازه‌ها می‌باشد. برای این منظور، با مدل‌سازی اجزای محدود سازه‌های دوبعدی با برنامه‌نویسی در محیط MATLAB، اعمال سناریو­های مختلف آسیب و بااستفاده از توابع هدف پیشنهادی، مکان و شدت هر نوع آسیب احتمالی از تکنیک بهینه‌سازی الگوریتم ژنتیک تعیین می­شود. مثال­های عددی ارائه‌شده نشان می‌دهد که وجود آسیب، مکان آسیب و شدت آسیب در مسائل دوبعدی با راهکارهای ارائه‌شده به‌طور کامل قابل‌شناسایی می‌باشند.

کلیدواژه‌ها


عنوان مقاله [English]

Damage Detection of Plane Strain/Stress Problems using Modal Data

نویسندگان [English]

  • Ali Motahhari
  • Jalal Akbari
Malayer University
چکیده [English]

Damages or cracks change the natural frequencies and the mode shapes of the structures. Therefore, the modal parameters could be used in damage detection or structural health monitoring techniques. Based on the knowledge of the authors, most researches in this field have been focused on one-dimensional problems, e.g. beams, trusses, columns, and frames. It seems that the main reason for the lack of comprehensive researches is the huge computational cost for two or three- dimensional problems involved with the finite-element modeling. In order to reduce the costs, two distinct techniques have been utilized here. Firstly, instead of using the genetic algorithm method, the particle swarm optimization (PSO) technique has been applied for finding the best solution. Secondly, instead of applying the fine meshes for calculation of the modal parameters in the finite- element modeling, the course meshes are used. In this paper, the combination of the frequencies and the mode shapes as an objective function has been applied in the optimization procedure for damage detection of two-dimensional plane stress type problems. For this purpose, the finite-element computer program has been developed in MATLAB environment for the required calculations. The results show that non- gradient-based optimization techniques such as GA and PSO have been successfully detected the existence, location and the intensities of the pre-defined damage scenarios.

کلیدواژه‌ها [English]

  • Damage Detection
  • Modal parameters
  • Genetic algorithm
  • Particle swarm optimization
1. Doebling, Scott W., Charles R. Farrar, Michael B. Prime, and Daniel W. Shevitz, "Damage Identification and Health Monitoring of Structural and Mechanical Systems from Changes in their Vibration Characteristics: A Literature Review", No. LA-13070-MS. Los Alamos National Lab., NM (United States), (1996).
2. Hejll, A, "Civil Structural Health Monitoring: Strategies, Methods and Applications", (Doctoral dissertation, Luleå tekniska universitet), (2007).
3. Farrar, C. R., & Jauregui, D. A, "Comparative Study of Damage Identification Algorithms Applied to a Bridge": II. Numerical study. Smart materials and structures, Vol.7, No. 5, pp.720, (1998).
4. Friswell, M., & Mottershead, J. E, "Finite Element Model Updating in Structural Ddynamics", Springer Science & Business Media, Vol. 38, (1995).
5. Allemang, R. J, "The Modal Assurance Criterion–twenty Years of Use and Abuse", Sound and vibration, Vol. 37, No.8, pp.14-23, (2003).
6. Aktan, A. E., Lee, K. L., Chuntavan, C., & Aksel, T, "Modal Testing for Structural Identification and Condition Assessment of Constructed Facilities", In Proceedings-spie the International Society for Optical Engineering, pp. 462-462, (1994).
7. Adams, R. D., Cawley, P., Pye, C. J., & Stone, B. J, "A Vibration Technique for Non-destructively Assessing the Integrity of Structures", Journal of Mechanical Engineering Science, Vol. 20, No.2, pp.93-100, (1978).
8. Stubbs, N., & Osegueda, R, "Global Damage Detection in Solids- Experimental Verification International", Journal of Analytical and Experimental Modal Analysis, Vol.5, pp.81-97, (1990)
9. Chen, H. P., & Bicanic, N, "Inverse Damage Prediction in Structures Using Nonlinear Dynamic Perturbation Theory", Computational Mechanics, Vol. 37, No. 5, pp.455-467, (2006).
10. Yang, Q. W., & Sun, B. X, "Structural Damage Identification Based on Best Achievable Flexibility Change", Applied Mathematical Modelling, Vol. 35, No.10, pp.5217-5224, (2001).
11. Khoo, L. M., Mantena, P. R., & Jadhav, P, "Structural Damage Assessment Using Vibration Modal Analysis", Structural Health Monitoring, Vol. 3, No.2, pp.177-194, (2004).
12. Frýba, L., & Pirner, M., "Load Tests and Modal Analysis of Bridges", Engineering Structures, Vol. 23, No. 1, pp.102-109, (2001)
13. Narayana, K. L., & Jebaraj, C., "Sensitivity Analysis of Local/global Modal Parameters for Identification of a Crack in a Beam", Journal of Sound and Vibration, Vol.228, No.5, pp.977-994, (1999).
14. Liu, P. L., "Identification and Damage Detection of Trusses Using Modal Data", Journal of Structural Engineering, Vol. 121, No.4, 599-608, (1995).
15. Dessi, D., & Camerlengo, G., "Damage Identification Techniques Via Modal Curvature Analysis: Overview and Comparison", Mechanical Systems and Signal Processing, Vol. 52, pp.181-205, (2015).
16. Chang, K. C., & Kim, C. W., "Modal-parameter Identification and Vibration-based Damage Detection of a Damaged Steel Truss Bridge", Engineering Structures, Vol.122, pp. 156-173, (2016).
17. Kim, J. T., Ryu, Y. S., Cho, H. M., & Stubbs, N., "Damage Identification in Beam-type Structures: Frequency-based Method vs Mode-shape-based Method", Engineering structures, Vol. 25, No.1, pp.57-67, (2003).
18. Lee, Y. S., & Chung, M. J., "A Study on Crack Detection Using Eigen-frequency Test Data", Computers & structures, Vol.77, No.3, pp.327-342, (2000).
19. Ndambi, J. M., Vantomme, J., & Harri, K.,"Damage Assessment in Reinforced Concrete Beams Using Eigen-frequencies and Mode Shape Derivatives", Engineering Structures, Vol. 24, No.4, 501-515, (2002).
20. MATLAB, "The Language of Technical Computing", Version 9.0.0. The Math-works Inc.: Natick, MA, (2016).
21. Cook, R. D., "Concepts and Applications of Finite Element Analysis", John Wiley & Sons, (2007).
22. Chopra, A. K., "Dynamics of Structures", (4th edition), Prentice-Hall International Series in Civil Engineering and Engineering Mechanics, (2011).
23. Vesterstrom, J. S., Riget, J., & Krink, T., "Division of Labor in Particle Swarm Optimization in Evolutionary Computation", CEC'02. Proceedings of the 2002 Congress on IEEE, Vol. 2, pp. 1570-1575, (2002).
CAPTCHA Image