ارزیابی پتانسیل روان‌گرایی خاک در اثر وقوع زمین‌لرزه بااستفاده از چند الگوریتم طبقه‌بندی هوشمند در نرم‌افزار Orange

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، دانشکدۀ مهندسی علوم زمین، دانشگاه صنعتی اراک.

2 دانشکدۀ مهندسی علوم زمین، دانشگاه صنعتی اراک.

چکیده

یکی از پیامدهای احتمالی وقوع زمین‌لرزه در زمین‌های اشباع، روان‌گرایی خاک و در نتیجۀ آن شکست و خرابی فونداسیون ساختمان‌ها، انواع زیرساخت‌ها، پل‌ها و بسیاری فجایع دیگر می‌باشد. در این تحقیق سعی شد به‌منظور ارزیابی پتاسیل روان‌گرایی خاک برروی ۷۹ نمونه از پایگاه دادۀ زلزلۀ تنگشان کشور چین، چند مدل طبقه‌بندی هوشمند با کمک نرم‌افزار Orange ساخته شود. به همین منظور عملکرد 5 روش طبقه‌بندی هوشمند (رگرسیون لاجستیک، شبکۀ عصبی مصنوعی (ANN)، ماشین بردار پشتیبان (SVM)، نزدیک‌ترین همسایگی(KNN) و جنگل تصادفی) براساس معیارهای مختلف با هم مقایسه شدند. نتایج نشان داد روش‌های SVM، ANN و رگرسیون لاجستیک از توانایی بالایی برای پیش‌بینی کلاس روان‌گرایی خاک برخوردار هستند و در بین آنها روش رگرسیون لاجستیک با مقدار شاخص AUC (۹۸/۰) به‌عنوان بهترین روش انتخاب شد. علاوه‌بر این، بررسی تأثیرگذاری متغیرها بااستفاده از چهار معیار بهرۀ اطلاعاتی، بهرۀ اطلاعاتی نسبی، شاخص جینی و شاخص ReliefF  بیانگر این است که متغیر مقاومت نوک مخروط در آزمایش نفوذ مخروطی مؤثرترین روش است و در اولویت اول قرار می‌گیرد. هم‌چنین متغیرهای نسبت تنش تناوبی و حداکثر شتاب افقی زلزله در سطح زمین ویژگی‌های مهمی‌ به‌حساب می‌آیند.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Soil Liquefaction Potential Due to Earthquake using Intelligent Classification Algorithm in Orange Software

نویسندگان [English]

  • Hadi Fattahi 1
  • Fateme Jiryaee 2
1 Rock Mechanics Engineering, Faculty of Earth Sciences Engineering, Arak University of Technology, Iran.
2 Faculty of Earth Sciences Engineering, Arak University of Technology, Iran
چکیده [English]

One of the possible consequences of earthquakes in saturated areas is soil liquefaction and as a result the failure of foundations of buildings, types of infrastructure, bridges and many other disasters. In this study, in order to evaluate the potential of soil liquefaction on 79 samples from China Tangshan Earthquake Database, several intelligent classification models were constructed with the help of Orange software. Therefore, the performance of 5 intelligent classification methods (Logistic Regression, Artificial Neural Network (ANN), Support Vector Machine (SVM), K-fold Nearest Neighbor (KNN) and Random Forest) were compared based on different criteria. The results showed that SVM, ANN and Logistic Regression methods have a high ability to predict soil liquefaction class and among them the Logistic Regression method with AUC index (0.98) was selected as the best method. In addition, the study of the effectiveness of variables using three criteria of Information Gain, Information Gain Ratio and Gini Index, indicates that the variable measured CPT tip resistance is the most effective variable and is the first priority. The variables of cyclic stress ratio and peak acceleration at the ground surfaceare also important features.

کلیدواژه‌ها [English]

  • Earthquake
  • liquefaction
  • intelligent classification algorithms
  • Orange software
  1. 1. Seed, H.B.J.E.e.r.i., "Ground motions and soil liquefaction during earthquakes", Earthquake engineering research insititue, Vol. 5, pp. 1249-1273, (1982).
  2. 2. Xue, X. and Yang, X.J.N.h., "Application of the adaptive neuro-fuzzy inference system for prediction of soil liquefaction", Natural hazards, Vol. 67, pp. 901-917, (2013).
  3. 3. Seed, H.B. and Idriss, I.M., "Simplified procedure for evaluating soil liquefaction potential" Journal of the Soil Mechanics and Foundations division, Vol. 97, pp. 1249-1273, (1971).
  4. 4. Kiang, M.Y.J.D.s.s., "A comparative assessment of classification methods", Decision support systems, Vol. 35, pp. 441-454, (2003).
  5. 5. Ramakrishnan, D., et al., "Artificial neural network and liquefaction susceptibility assessment: a case study using the 2001 Bhuj earthquake data, Gujarat, India", Computational Geosciences, 12, pp. 491-501, (2008).
  6. 6. Chern, S.-G., Lee, C.-Y.J.J.o.M.S., and Technology, "CPT-based simplified liquefaction assessment by using fuzzy-neural network", Journal of Marine Science and Technology, 17, pp. 326-331, (2009).
  7. 7. Mughieda, O., Bani-Hani, K., and Safieh, B.J.I.J.o.G.E., "Liquefaction assessment by artificial neural networks based on CPT", International Journal of Geotechnical Engineering, Vol. 3, pp. 289-302, (2009).
  8. 8. Sulewska, M.J.J.C.A.M.i.E. and Science, "Applying artificial neural networks for analysis of geotechnical problems", Computer Assisted Methods in Engineering and Science, Vol. 18, pp. 231-241, (2017).
  9. 9. Samui, P., Sitharam, T.J.N.H., and Sciences, E.S., "Machine learning modelling for predicting soil liquefaction susceptibility", Natural Hazards and Earth System Sciences, Vol. 11, pp. 1-9, (2011).
  10. 10. Farrokhzad, F., Choobbasti, A., and Barari, A.J.J.o.K.S.U.-S., "Liquefaction microzonation of Babol city using artificial neural network", Journal of King Saud University, Vol. 24, pp. 89-100, (2012).
  11. 11. Tolon, M.J.I.J.H.S., "A comparative study on computer aided liquefaction analysis methods", Journal for Housing Science, Vol. 37, pp. 121-35, (2013).
  12. 12. Muduli, P.K. and Das, S.K.J.I.G.J., "CPT-based seismic liquefaction potential evaluation using multi-gene genetic programming approach", Indian Geotechnical Journal, Vol. 44, pp. 86-93, (2014).

13 .Bre, F., et al., "Prediction of wind pressure coefficients on building surfaces using artificial neural networks", Energy and Buildings, Vol. 158, pp. 1429-1441, (2018).

  1. 14. Mashrei, M.A.J.F.I.S.-T., "Neural network and adaptive neuro-fuzzy inference system applied to civil engineering problems", Fuzzy Inference System-Theory and Applications, Vol., (2012).
  2. 15. Noble, W.S.J.N.b., "What is a support vector machine?", Nature biotechnology, Vol. 24, pp. 1565-1567, (2006).
  3. 16. Wu, X. and Kumar, V., "The top ten algorithms in data mining". CRC pres, (2009.(
  4. 17. Wright, R.E., "Logistic regression", American Psychological Association, Vol., (1995).
  5. 18. Breiman, L.J.M.l., "Random forests", Machine learning, Vol. 45, pp. 5-32, (2001).
  6. 19. Raileanu, L.E., Stoffel, K.J.A.o.M., and Intelligence, A., "Theoretical comparison between the gini index and information gain criteria", Annals of Mathematics and Artificial Intelligence, Vol. 41, pp. 77-93, (2004).
  7. 20. Kira, K. and Rendell, L.A. The feature selection problem: Traditional methods and a new algorithm. in Aaai. 1992.
  8. 21. Xue, X., Yang, X.J.B.o.E.G., and Environment, t., "Seismic liquefaction potential assessed by support vector machines approaches", Bulletin of Engineering Geology and the Environment, Vol. 75, pp. 153-162, (2016).
CAPTCHA Image