شبیه‌سازی سه‌بعدی پدیدۀ رهایی متناوب گردابه‌ها و انتقال رسوب بستر حول موانع در معرض جریان با استفاده از Flow3D

نوع مقاله : پژوهشی

نویسندگان

1 گروه مهندسی عمران، دانشکدۀ فنّی و مهندسی، دانشگاه شهید مدنی آذربایجان، تبریز.

2 گروه مهندسی عمران، دانشکدۀ مهندسی عمران، دانشگاه صنعتی سهند، تبریز.

3 گروه مهندسی آب، قطب علمی هیدروانفورماتیک، دانشکدۀ مهندسی عمران، دانشگاه تبریز، تبریز

چکیده

پل­ها یکی از مهم­ترین سازه­های هیدرولیکی ارتباطی به شمار می­روند. برخورد جریان به پایۀ پل‌ها فرسایش اطراف پایه و آسیب‌دیدگی آن را به دنبال دارد. ازاین‌رو یکی از مباحث مهم در زمینۀ ایمنی پل­ها، کنترل فرسایش بستر اطراف پایه­ها است. تاکنون مدل­های فیزیکی مختلفی در آزمایشگاه برای بررسی رفتار جریان و فرسایش بستر پیرامون آن ساخته شده­اند که صرف­نظر از هزینه و زمان­بر بودن آزمایش­ها، مشکلات ناشی از تغییرات مقیاس را نیز به همراه داشته­اند. امروزه با استفاده از کدهای دینامیک سیّالات محاسباتی کارآمدّتر، رفتار هیدرودینامیکی سیّالات به­طور گسترده­تری بررسی می­شود. در این تحقیق برای این منظور از نرم‌افزار Flow3D استفاده شده است. این پژوهش به شبیه­سازی جریان اطراف مدل پایه­های پل مختلف پرداخته و الگوی جریان و فرسایش بستر را بررسی می‌نماید. با توجّه به حساسیت مدل­های عددی به تعداد سلول­های شبکه در میدان محاسباتی، صحّت­سنجی تعداد مختلف شبکه، با مقایسه نیمرخ‌های سرعت انجام یافته است. سه مدل آشفتگی مختلف نیز مورد بررسی قرار گرفته و پس از بررسی نیمرخ­های سطح آزاد آب، الگوی جریان اطراف پایه و عدد استروهال، شبیه­سازی جریان با مدل آشفتگی LESانجام گردیده است. تعداد 15 مدل نیز برای ارزیابی دو پارامتر مهم عامل آب‌شستگی، جدایش جریان و جریان رو به پایین، انتخاب شده­اند. ابزارهای انتخابی در این راستا، سکو، مقطع هندسی پایه و شکاف می­باشند. نتایج نشان داد در اغلب موارد استفاده از یک ابزار کنترل آب‌شستگی بهتر از ترکیب ابزارهای مختلف عمل می­کند با به‌کارگیری شکل عدسی به‌عنوان مقطع هندسی پایه، عمق آب‌شستگی تا 58 درصد کاهش و با مدل ترکیبی مقطع مستطیلی گردگوشه، سکو و شکاف بیشینۀ عمق فرسایش یافته تا 50 درصد کاهش نشان داد. نتایج به‌دست‌آمده بیانگر آن است که کنترل جدایش جریان و پدیدۀ شکست گردابه به­مراتب بیش از کنترل جریان رو به پایین در کاهش فرسایش بستر مؤثر است.

کلیدواژه‌ها


عنوان مقاله [English]

Three Dimensional Simulation of Vortex SheddingPhenomenon and Sediment Transportaround Obstacles subjected to flow, Using Flow3D

نویسندگان [English]

  • Nazila Kardan 1
  • Habib Hakimzadeh 2
  • Yousef Hassanzadeh 3
1 Assistant Professor, Department of Civil Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran.
2 Faculty of Civil Engineering, Sahand University of Technology, Tabriz, Iran.
3 Department of Water Engineering, Center of Excellence in Hydroinformatics, Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran.
چکیده [English]

Bridges are known as one of the most important communicational hydraulic structures. This is particularly so important in bridge piers exposed to river currents.The flow contact with bridge piers causes erosion around them and would result in damage. Therefore, controlling the erosion around the piers is one of the most important objects in the bridge safety. Many different experimental models have been prepared so far to investigate the flow pattern and local scour around this structure. Regardless of the cost and time of the experiments, problems resulting from changes in scale are also available. Nowadays, the Hydrodynamic behavior of the fluid is more extensively investigated by using the more efficient codes of computational fluid dynamic (CFD). The Flow3D software is used for this regard. This study focuses on the simulation of flow around the different bridge piers and studied the flow pattern and bed erosion around them. In this regard, the assumption of incompressible fluid is used and the sharp free surface is modeled by Volume of Fluid (VOF). Considering the sensitivity of numerical models to the number of cells in the computational domain, verifying the number of cells has been done by comparing the velocity profiles. Three different turbulence models also are investigated, and the free surface profiles, flow pattern around the pier and the Strouhal number are compared. Finally, the flow simulation is done by LES turbulence model. For investigation the two key factors causing local scouring, flow separation and downward flow in upstream of the pier, th1 10 models is selected. The countermeasures that considered in this regard include berm, cross-section and middle slot. The results show that the effect of flow separation control in reducing the bed erosion is much more than controlling the downward flow. Also the results revealed that in most cases using one countermeasure may be acts more better than situations different countermeasures was applied. In using lenticular cross-section, the scouring depth weas decreased up to 58% and with using the combined round-nosed rectangular cross-section, berm, and slot, the scouring depth showed decreasing up to 50%. Also, it was concluded that controlling the flow separation from the pier in boundary layer and the vortex shedding affect the bed erosion much more than the downward flow in pier upstream.

کلیدواژه‌ها [English]

  • Numerical simulation
  • Vortex shedding
  • Flow3D software
  • Turbulence model
  • Scour
  • Bridge pier
1.    Breusers, H. N. C., and Raudkivi, A. J., "Scouring, In: Hydraulic Structures Design Manual", International Association of Hydraulic Research, Balkema, Vol. 2, pp. 143, (1991).
2.    Raudkivi, A. J., and Ettema, R., "Clear-water scour at cylindrical piers", Journal of Hydraulic Engineering, Vol. 109, No. 3, pp. 338-50, (1983).
3.    Sumer, B. M., and Fredsoe, J., "The mechanics of the scour in the marine environment", Advanced Series on Ocean Engineering, Vol. 17, (2002).
4.    Laursen, E. M., and Toch, A., "Scour around bridge piers and abutments", Iowa Highway Research Board Bulletin, No. 4, Bureau of Public Roads, Iowa, (1956).
5.    Shen, H. W., Schneider, V. R., and Karaki, S. S., "Local scour around bridge piers", Journal of the Hydraulics Division, Vol. 95 (HY6), pp. 1919–1940, (1969).
6.    Melville, B. W., "Local scour at bridge sites", Rep. No. 117, Dept. of Civil Engineering, School of Engineering, Univ. of Auckland, Auckland, New Zealand, (1975).
7.    Dargahi, B., "Controlling mechanism of local scouring", Journal of Hydraulic Engineering, ASCE, Vol. 116, No. 10, pp.1197-1214, (1990).
8.    Graf, W. H., and Istiarto, I., "Flow pattern in the scour hole around a cylinder", Journal of Hydraulic Research, Vol. 40, No. 1, pp. 13-20, (2002).
9.    Drysdale, D. M., "The effectiveness of an aerofoil shaped pier in reducing downstream vortices and turbulence", University of Southern Queensland, (2008).
10.  Grimaldi, C., Gaudio, R., Calomino, F., and Cardoso, A. H., "Control of scour at bridge piers by a downstream bed sill", Journal of Hydraulic Engineering, Vol. 135, No. 1, pp. 13-21, (2009a).
11.  Grimaldi, C., Gaudio, R., Calomino, F., and Cardoso, A. H., "Countermeasures against Local Scouring at Bridge Piers: Slot and Combined System of Slot and Bed Sill", Journal of Hydraulic Engineering, Vol. 135, No. 5, pp. 425-31, (2009b).
12.  Gaudio, R., Tafarojnoruz, A., and Calomino, F., "Combined flow-altering countermeasures against bridge pier scour", Journal of Hydraulic Research, Vol. 50, No. 1, pp. 35-43, (2012).
13.  Richardson, J., and Panchang, V., "Three-dimensional simulation of scour-inducing flow at Bridge Piers", Journal of Hydraulic Engineering, ASCE, Vol. 124, No. 5, pp. 530-540, (1998).
14.  Yen, C., Sunglai, J., and Chang, W., "Modeling of 3D flow and scouring around circular piers", proceeding of National Science Council, Republic of China, Vol. 25, No. 1, pp.17-26, (2000).
15.  Vasquez, J. A., and Walsh, B. W., "CFD simulation of local scour in complex piers under tidal flow", 33rd IAHR Congress: Water Engineering for a Sustainable Environment. ISBN: 978-94-90365-01-1 (2009).
16.  Abdelaziz, S., Bui, M. D., and Rutschmann, P., "Numerical simulation of scour development due to submerged horizontal jet", Institute of Hydraulic and Water Resources Engineering, Technische Universität München, Munich,Germany, (2011).
17.   مهرزاد، ر.، "بررسی تجربی و عددی پدیده آب‌شستگی موضعی در اطراف پایه­های مخروطی شکاف­دار تحت جریان دائمی"، پایان­نامه کارشناسی ارشد مهندسی عمران- سازه­های دریایی، دانشگاه صنعتی سهند، (1390).
18.   اسدی پرتو، ا.، اقبال زاده، ا.، و احمدی، آ.، "بررسی اثر قطر پایه بر الگوی جریان در کانال مستقیم با استفاده از Flow3D"، یازدهمین کنفرانس هیدرولیک ایران، دانشگاه ارومیه، (1391).
19.   حمیدی­فر، ح.، امید، م. ح.، "شبیه­سازی سه بعدی جریان در آبراهه­های با مقطع مرکب با مدل Flow3D"، یازدهمین کنفرانس هیدرولیک ایران، دانشگاه ارومیه، (1391).
20.   توحیدی، ح. ر.، "بررسی تجربی و عددی فرایند آب‌شستگی در اطراف پایه­هایی با مرزهای جانبی متناسب با پروفیل سرعت تحت جریان دائمی"، پایان نامه کارشناسی ارشد مهندسی عمران- سازه­های دریایی، دانشگاه صنعتی سهند، (1392).
21.   حسن زاده، ی.، کاردان، ن.، و حکیم زاده، ح.، "مطالعه عددی سه­بعدی مدل­های ترکیبی شکل پایه و شکاف در کاهش تنش­های برشی آغازکننده آبشستگی پیرامون پایه­های پل، نشریه مهندسی عمران و محیط زیست"، 44(4) صفحات 39 الی 50، (1393).
22. Flow Science, Inc.,  "FLOW-3D User’s Manual", Flow Science, Inc, (2008).
23.  Smith, H., and Foster, D., "Modeling of flow around a cylinder over a scoured Bed", Journal of waterway, port, coastal, and ocean engineering, Vol. 14, No. 1, pp. 121-137, (2005).
24.  Brethour, J. M., "Transient 3-d model for lifting, transporting and depositing solid material", International Symposium on Environmental University Hydraulics, Tempe, Arizona, (2001).
25.  Soulsby, R. L., and Whitehouse, R. J. S. W., "Threshold of sediment motion in Coastal Environments, Proc", Combined Australian Coastal Engineering and Port Conference, EA, pp. 149-154, (1997).
26.  Meyer-Peter, E., and Müller, R., "Formulas for bed-load transport", Proceedings of the 2nd Meeting of the International Association for Hydraulic Structures Research, pp. 39–64, (1948).
27.  Van Rijn, L. C.,"Sediment transport, Part I: bed load transport", Journal of Hydraulic Engineering, 110(10), pp. 1431-1456, (1984).
28.   عبداللهی، م.، و عاطفی، غ. ع.، "شبیه­سازی پدیده رهایی متناوب گردابه­ها در یک جریان دو بعدی حول مانع مربعی در یک کانال، با استفاده از روش شبکه بولتزمن"، فصلنامه مکانیک هوافضا (مکانیک سیالات و آیرودینامیک)، 7(4) صفحات 51 الی 63، (1390).
29.  Melville, B. W., and Chiew, Y. M., "Time Scale for Local Scour at Bridge Piers", Journal of
Hydraulic Engineering,
ASCE, Vol. 125, No. 1, pp. 59-65, (1999).
 
 
 
CAPTCHA Image