تحلیل مخازن زمینی مکعبی بتنی با جداساز پایه تحت مولفه‌های انتقالی و دورانی زلزله

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی عمران، دانشکده فنی و مهندسی، موسسه آموزش عالی طبری، بابل.

2 گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه پیام نور، تهران.

3 دانشکده مهندسی عمران، دانشگاه صنعتی نوشیروانی بابل، بابل.

چکیده

در این پژوهش رفتار مخازن بتنی زمینی مکعبی مجهز به جداساز‌ پایه هسته سربی، تحت تحریک هم‌زمان مولفه‌های انتقالی و دورانی زلزله‌های حوزه دور از گسل با استفاده از تحلیل تاریخچه زمانی غیرخطی با احتساب اندرکنش آب و سازه مورد بررسی قرار گرفته است. بدین منظور ابتدا مولفه دورانی سه زلزله‌ حوزه دور با استفاده هم‌زمان از تئوری انتشار امواج و روابط تئوری الاستیسیته با کدنویسی در نرم‌افزار متلب تولید شد. سپس مخازن در دو حجم 500 و 1000 مترمکعب در سه حالت خالی، نیمه‌پر و پر در نرم‌افزار اجزای محدود انسیس مدل‌سازی و از تعداد مناسبی جداساز در تراز کف استفاده گردید. در مدل‌سازی اجزای محدود جداساز، مدلی متشکل از المان‌های یک‌بعدی پیشنهاد و استفاده شده که رفتار هیسترزیس آن معادل رفتار مدل سه‌بعدی جداساز لاستیکی هسته سربی می‌باشد. نتایج پژوهش نشان می‌دهد اثر کاهشی یا افزایشی مولفه دورانی زلزله بر پاسخ لرزه‌ای مخازن زمینی در حالت پر و نیمه‌پر کمتر از 10% بوده و در حالت کلی می‌توان از اثر آن بر پاسخ لرزه‌ای مخازن مکعبی زمینی صرف‌نظر نمود. همچنین به‌کارگیری جداساز در این نوع مخازن سبب افزایش پاسخ مخازن در کلیه حالت‌های مورد بررسی شده است. به طوری‌که نیروی برش پایه تا 4 برابر و تنش بلندشدگی بین 8 الی 23 برابر افزایش یافته که این اثر را می‌توان به افزایش دوره تناوب مخازن زمینی از محدوده ابتدایی طیف پاسخ به ناحیه شتاب ثابت طیف به دلیل حضور جداساز نسبت داد.

کلیدواژه‌ها


عنوان مقاله [English]

Dynamic analysis of concrete rectangular ground tanks equipped with base isolators due to transitional and rotational components of earthquakes

نویسندگان [English]

  • leila kalani sarokolayi 1
  • Leila Khanmohammadi 2
  • Bahram Navayi Neya 3
1 Department of Structural Engineering, Faculty of Civil Engineering, Tabari University, Babol
2 Department of Civil Engineering, Faculty of Engineering, Payame Noor University, Tehran, Iran.
3 Faculty of Civil Engineering, Noshirvani University of Technology, Babol.
چکیده [English]

In this research, the behavior of concrete rectangular ground tanks equipped with lead-rubber base isolators has been investigated under the simultaneous excitation of transitional and rotational components of earthquakes, using nonlinear time history analysis including water-structure interaction. For this purpose, first, the rotational component of three earthquakes was generated using the wave propagation and classic elasticity theories simultaneously. Then, the tanks equipped with appropriate number of base isolators were modeled in two volumes of 500 and 1000 m3 and three states of water level. In modeling the finite elements of the isolators, a model consisting of one-dimensional elements is proposed; whose hysteresis behavior is equivalent to the behavior of the three-dimensional model of the isolators.

The results of the research show that the decreasing or increasing effect of the rotational component of the earthquake on the seismic response of these tanks in the full and half-full state is less than 10%, and in general, its effect on the seismic response of the rectangular ground tanks can be ignored. Also, the presence of isolators in these types of tanks has increased the response of the tanks in all states. So that the base shear force has increased up to 4 times and the normal stress has increased between 8 and 23 times, which can be attributed to the increase in the period of ground tanks from the initial range of the response spectrum to the constant acceleration region of the spectrum due to the presence of the base isolators.

کلیدواژه‌ها [English]

  • concrete rectangular ground tank
  • rotational component
  • base isolator
  • water-structure interaction
  • nonlinear dynamic analysis
  1.  

    1. M. Hoskins, and L.S. Jacobsen, “Water Pressure in a Tank Caused by Simulated Earthquake,” Bulletin of the seismological society of America, vol. 24, pp.1-10, 1934.
    2. S. Jacobsen, “Impulsive hydrodynamics of fluid inside a cylindrical tank and of fluid surrounding a cylindrical pier,” Bulletin of the Seismological Society of America, vol. 39, no. 3, pp.189-204, 1949.
    3. W. Housner, “Dynamic pressure on accelerated fluid containers,”Bulletin of the seismological society of America, vol. 47, no. 1, pp. 15-35, 1963.
    4. W. Clough, D. P. Clough, and A. Niwa, “Experimental seismic study of cylindrical tanks,” Journal of the Structural Division, vol. 105, no. 1/2, pp. 2565-2590, 1979.
    5. A. Haroun, and G.W. Housner, “Seismic Design of Liquid Storage Tanks,” Journal Technical Councils, ASCE, vol. 107, no. 1, pp. 191-207, 1991.
    6. C. Dutta, “Seismic torsional behaviour of elevated tanks for improved code provisions: elastic behaviour,” Journal of the Institution of Engineers, India, Civil Engineering Division, vol. 80(FEV), pp. 169-181, 2000.
    7. Shakib, F. Omidinasab, and M.T. Ahmadi, “Seismic demand evaluation of elevated reinforced concrete water tanks,” International Journal of Civil Engineerng, vol. 8, no. 3, pp. 204-220, 2010.
    8. Omidinasab, and H. Shakib, “Seismic response evaluation of the RC elevated water tank with fluid-structure interaction and earthquake ensemble,” KSCE Journal of Civil Engineering, vol. 16, no. 3, pp. 366-376, 2012.
    9. M. Jabar, and H.S. Patel, “Seismic behaviour of RC elevated water tank under different staging pattern and earthquake characteristics,” International journal of advanced engineering research and studies (IJAERS), ISSN: 2249–8974, vol. 1, pp. 293-296, 2012.
    10. Khoubani, Sh. Hashemi, and A. Alipour, “Dynamic analysis of concrete rectangular tanks considering the effect of soil-structure-fluid interaction,” Journal of Structural and Construction Engineering (JSCE), vol. 5, no. 1, p. 189-209, 2018.
    11. O. Lakhade, and R. Kumar, ”Damage states of yielding and collapse for elevated water tanks supported on RC frame staging,” Structural Engineering and Mechanics, vol. 67, no. 6, pp. 587-601, 2018.
    12. Rahimzadeh, and S. Bagheri K., “Dynamic Behavior of Flexible Ground Tanks,” 4th International Conference on Seismology and Earthquake Engineering, Tehran, (2003), (In Persian).
    13. Kalani Sarokolayi, and B. Navayi Neya, “Evaluation of modification factor for concrete cylindrical tanks using pushover analysis,” Journal of Civil Engineering, Ferdowsi University of Mashhad, vol. 23, no. 2, pp. 53-57, 2012.
    14. Kalani Sarokolayi, B. Navayi Neya, and J. Vaseghi Amiri, and H.R. Tvakoli, “Seismic Analysis Of Elevated Water Storage Tanks Subjected To Six Correlated Ground Motion Components,” ISSN: 2079-2115, (2013).
    15. S. Ghods, and M. R. Esfahani, “The Effect of Wall Cross Section and Damping Ratio on Seismic Responses of Rectangular Water Storage Tanks,” Journal of civil and environmental engineering, Tabriz University, 2013, (In Persian).
    16. M. Newmark, “Torsion in Symmetrical Buildings,” Proceeding of the 4th World Conference on Earthquake Engineering, Santiago, Chile, A3, pp. 19-23, 1969.
    17. D. Trifunac, “A note on rotational components of earthquake motions on ground surface for incident body waves,”Soil Dynamic and Earthquake Engineering, vol. 1, no. 1, pp. 11-19, 1982.
    18. W. Lee, and M. D. Trifunac, “Rocking strong earthquake accelerations,” Soil Dynamic and Earthquake Engineering, vol. 6, no. 2, pp. 75-89, 1987.
    19. W. Lee, and L. Liang, “Rotational components of strong motion earthquakes,” 14th world conference on earthquake engineering, Beijing, China, (2008).
    20. N. Li, L. Y. Sun, and S. Y. Wang, “Improved approach for obtaining rotational components of seismic motion,” Nuclear Engineering and Design, vol. 232, no. 2, pp. 131-137, 2004.
    21. Kalani Sarokolayi, B. Navayi Neya, and H.R. Tavakoli, “RotationalComponents Generational of Earthquake Ground Motion Using TranslationalComponents,” 15WCEE, Lisbon, (2012).
    22. Kalani Sarokolayi, “Nonlinear Dynamic Analysis of Concrete Gravity Dams under Spatial Varying Transitional and Rotational Components of Earthquakes,” Phd thesis, Babol Noushirvani University of Technology, 2013, (In Persian).
    23. Ghafory-Ashtiani,and M. P. Singh, “Structural response for six correlated earthquake components,” Journal of Earthquake Engineering and Structural Dynamics, vol. 14, no. 1, pp. 103-119, 1986.
    1. [24] S. Harischian, and H. Shakib, “Investigation of Methods of Generating Rotational Components of Earthquakes and Evaluating Their Effect on Structure Behavior,” Annual Conference on Research in Civil Engineering, Architecture and Urban Planning and Sustainable Environment, Tehran, (2015), (In Persian).
    1. Dadpanah, “Dynamic Analysis of Framed Concrete Elevated tanks Considering Soil- Fluid -Structure Interaction,” M.S thesis, Babol Noushirvani University of Technology, 2020 (In Persian).
    2. W. Shenton III, and F. P. Hampton, “Seismic response of isolated elevated water tanks,” ASCE Journal of Structal Engineering, vol. 125, no. 9, pp. 965–76, 1999.
    3. K. Shrimali, and R.S. Jangid, “ Seismic response of liquid storage tanks isolated by sliding Bearings,” Journal Engineering Structures, vol.24, pp. 909-921, 2001.
    4. K. Shirmali, and R. S. Jangid, “ The seismic response of elevated liquid storage tanks isolated by lead-rubber bearings,” Bull NZ Soc Earthquake Eng, pp. 41–64, 2003.
    5. K. Shrimali, and R.S. Jangid, “ Earthquake Response ofIsolated Elevated Liquid Storage Steel Tanks,” Journal of Constructional Steel Research, vol.59, pp.1267- 1288-119, 2003.
    6. K. Shrimali, and R.S. Jangid, “Seismic analysis of base-isolated liquid storage tanks,” Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India, (2003).
    7. R. Shekari, N. Khaji, and M.T. Ahmadi, “On the seismic behavior of cylindrical baseisolated liquid storage tanks excited by long-period ground motions,” journal Soil Dynamics and Earthquake Engineering, vol. 30, pp. 968-980, 2010.
    8. Moslemi, and M. R. Kianoush, “ Application of seismic isolation technique to partially filled conical elevated tanks,” Engineering Structures, vol. 127, pp. 663–675, 2016.
    9. Kalani Sarokolayi, L. Khanmohammadi, and B. Navayi Neya, “ Effect Of Base Isolation On Seismic Response Of Concrete Elevated Tanks Subjected To Both Translational And Rotational Components Of Far And Near-Field Earthquakes,” Sharif Journal of Civil Engineering (SJCE), vol. 37.2, no. 3.2, pp. 59-71, 2021 (In Persian).
    10. Guideline for Design and Practice of Base Isolation Systems in Buildings, Code No. 523, Vice Presidency for Strategic Planning and Supervision, Iran, 2010 (In Persian).
    11. W. Ogden, "Nonlinear elastic deformations", Dover Publications Inc, 1984.
    12. W. Ogden, “ Recent advances in the phenomenological theory of rubber el,” J Rubber Chem Technol, vol. 59, pp. 361-383, 1986.
    13. R. G. Treloar, “ Stress-strain data for vulcanized rubber under various types of deformations,” Trans Faraday Soc, vol. 40, pp. 59–70, 1944.
    14. R. G. Treloar, “ The physics of rubber elasticity,” Oxford: Clarendon Press, 1975.
    15. Kalab, and J. Knejzlik, “ Examples of rotational componen records of mining induced seismic events from the Karvina region,” ACTA Geodynamicia and Geomaterialia, vol. 9, no. 2, pp. 173-178, 2012.
    16. S. G‌h‌o‌d‌s, M. R‌. E‌s‌f‌a‌h‌a‌n‌i, A.H. K‌e‌i‌v‌a‌n‌i, “ F‌ree V‌ibration O‌f Rectangular Concrete Liquid Storage Tanks: Expriments and Finilte Element Analysis,” Sharif Journal of Civil Engineering (SJCE), vol. 28.2, no. 4, pp. 105-113, 2013 (In Persian).

     

CAPTCHA Image