بررسی امکان دستیابی به ساختمان با مصرف انرژی خالص صفر با استفاده از سیستم های فتوولتاییک و در نظر گرفتن الزامات طرحهای توسعه شهری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی عمران، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران

2 دانشکده مهندسی معماری، دانشگاه ایالتی پنسیلوانیا، آمریکا

چکیده

با توجه به پیشرفت تکنولوژیکی و توسعه سیستمهای فتوولتائیک، استفاده از این فناوری برای ساختمانهای با انرژی خالص صفر  امیدوارکننده است. با این حال، برای دستیابی به نتایج قابل اطمینانتر، تجزیه و تحلیل دقیق انرژی در ساختمان با در نظرگرفتن محدودیتهای شهری، شرایط آب و هوایی و منابع انرژی تجدیدپذیر ضروری است. هدف از این مطالعه تعیین پیکربندی مناسب اجزای ساختمان و تأسیسات فتوولتاییک برای دستیابی به ساختمان با مصرف انرژی خالص صفر با در نظر گرفتن شرایط محیطی و محدودیتهای طرحهای شهری می‌باشد. ابتدا به کمک تحلیل حساسیت متغیرهای تأثیرگذار مؤثر بر توابع هدف (مصرف انرژی در ساختمان و هزینه) شناسایی شدند. سپس برای کمینه کردن توابع هدف از فرایند بهینه‌سازی استفاده شد. ترکیبات مختلفی از سیستمهای فتوولتاییک برای تأمین الکتریسیته موردنیاز ساختمان به‌منظور دستیابی به ساختمان با مصرف انرژی خالص صفر مورد بررسی قرار گرفت. نتایج مدلسازی در یک ساختمان مسکونی سه‌طبقه واقع در شهر رشت نشان می‌دهد بهینه‌سازی انرژی در ساختمان، مصرف انرژی را تا 20% کاهش می‌دهد. سولهای خورشیدی نصب‌شده روی پشت بام 2/87% کل انرژی الکتریسیته تولید شده و سولهای خورشیدی نصب‌شده در نمای جنوبی 8/12% کل انرژی تولید شده سیستم فتوولتاییک را تشکیل می‌دهد. همچنین با نصب سلولهای خورشیدی روی سقف و نمای جنوبی ساختمان می‌توان تا 2/88% انرژی موردنیاز یک ساختمان سه‌طبقه را در محل مورد مطالعه تأمین کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the potential of designing net-zero energy buildings using photovoltaic installation with considering urban development plans requirements

نویسندگان [English]

  • Seyedsajad Rezaeinasab 1
  • Abbasali Tayefi Nasrabadi 1
  • Somayeh Asadi 2
  • Seiyed Ali Haj Seiyed Taghia 1
1 Department of Civil Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
2 Department of Architectural Engineering, Pennsylvania State University, University Park, Pennsylvania, USA,
چکیده [English]

Due to technological improvement and the development of photovoltaic (PV) systems, the application of PV installation for net-zero energy buildings (NZEBs) is promising. However, to achieve more reliable results, precise energy analysis is necessary to take into consideration both the urban plans restrictions and the climatic conditions of renewable energy resources and building energy consumption. This study aims to define the most favorable configuration of building components and PV installation to meet NZEB requirements, considering urban development plans limits. First, a sensitivity analysis was performed to indicate the most influential variables that affect building energy demand and cost. Next, an optimization process was conducted to concurrently minimize the building energy consumption and capital cost. Besides, a different configuration for PV panel installation was used for quantifying the possibility of achieving NZEB. The results show that in a residential 3-story building the optimized configuration of the building envelope and systems can reduce electricity consumption by 20%. The rooftop PV account for 87.2% and PV installation on the southern façade contributed to 12.8% of total electricity generation. PV installation on the south façade and roof covers 88.2% of the building's electricity demand.

کلیدواژه‌ها [English]

  • Net-zero energy buildings
  • photovoltaic
  • urban planning requirements
  • sensitivity analysis
  • optimization
[1] S. S. Rezaeinasab, A.Taefi nasrabadi, S. Asadi, and S. A. Haj seiyed taghia, “Investigating the probability of designing net-zero energy buildings with consideration of electric vehicles and renewable energy,” Engineering, Construction and Architectural Management, vol. 29, pp. 4061-4087, 2021.
[2] W. Wu and H. M. Skye, “Residential net-zero energy buildings: Review and perspective,” Renewable and Sustainable Energy Reviews, vol. 142, pp. 110859, 2021.
[3] L. Wells, B. Rismanchi, and L. Aye, “A review of Net Zero Energy Buildings with reflections on the Australian context,” Energy and Buildings, vol. 158, pp. 616-628, 2018.
[4] G. Tiwari, R. Mishra, and S. Solanki, “Photovoltaic modules and their applications: a review on thermal modelling,” Applied Energy, vol. 88, no. 7, pp. 2287-2304, 2011.
[5] K. Sudhakar, M. Winderla, P. Maximilian, and S. S. Sudhakar, “Net-zero building designs in hot and humid climates: A state-of-art,” Case Studies in Thermal Engineering, vol.13, pp. 100400, 2019.
[6] A. Scognamiglio and H. R. Røstvik, “Photovoltaics and zero energy buildings: a new opportunity and challenge for design,” PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS, vol. 21, no. 6, pp. 1319-1336, 2013.
[7] Y. Lu, S. Wang, and K. Shan, “Design optimization and optimal control of grid-connected and standalone nearly/net zero energy buildings,” Applied Energy, vol. 155, pp. 463-477, 2015.
[8] C. Good, I. Andresen, and A. G. Hestnes, “Solar energy for net zero energy buildings–A comparison between solar thermal, PV and photovoltaic–thermal (PV/T) systems,” Solar Energy, vol. 122, pp. 986-996, 2015.
[9]  A. Chel and G. Kaushik, “Renewable energy technologies for sustainable development of energy efficient building,” Alexandria Engineering Journal, vol. 57, no. 2, pp. 655-669, 2018.
[10] D. Aelenei, L. E. Aelenei, E. Musall, and E. Cubi, “Design strategies for non-residential zero-energy buildings: lessons learned from Task40/Annex 52: towards net zero-energy solar buildings,” in CLIMA 2013-11th REHVA World Congress & 8th International Conference on IAQVEC (Pregue, Czech Republic), 2013.
[11] J. Marchwiński and K. Kurtz-Orecka, “Effect of photovoltaic installation power and façade glazing ratio on the energy performance of a nursery building,” Engineering, Construction and Architectural Management, Vol. 30, pp. 1463-1480, 2022.
[12] S. Asadi, M. Nazari-Heris, S. S. Rezaeinasab, H.Torabi, M. Sharifironizi,”An updated review on net-zero energy and water buildings: Design and operation,” Food-Energy-Water Nexus Resilience and Sustainable Development: Decision-Making Methods, Planning, and Trade-Off Analysis: Springer, pp. 267-290, 2020. [E-book] Available: https://doi.org/10.1007/978-3-030-40052-1_12.
[13] A. K. Yadav and S. Chandel, “Tilt angle optimization to maximize incident solar radiation: A review,” Renewable and Sustainable Energy Reviews, vol. 23, pp. 503-513, 2013.
[14] A. Shariah, M. A.  Al-Akhras, and I. Al-Omari, “Optimizing the tilt angle of solar collectors,” Renewable Energy, vol. 26, no. 4, pp. 587-598, 2002.
[15] C. Liu, W. Xu, A. Li, and D. Sun, “Energy balance evaluation and optimization of photovoltaic systems for zero energy residential buildings in different climate zones of China,” Journal of Cleaner Production, vol. 235, pp. 1202-1215, 2019.
[16] Y. J. Wang and P. C. Hsu, “An investigation on partial shading of PV modules with different connection configurations of PV cells,” Energy, vol. 36, no. 5, pp. 3069-3078, 2011.
[17] R. K. Pachauri, I. Kansal, T. S. Babu, and H. H. Alhelou, “Power losses reduction of solar PV systems under partial shading conditions using re-allocation of PV module-fixed electrical connections,” IEEE Access, vol. 9, pp. 94789-94812, 2021.
[18] D. Fares, M. Fathi, I. Shams, and S. Mekhilef, “A novel global MPPT technique based on squirrel search algorithm for PV module under partial shading conditions,” Energy Conversion and Management, vol. 230, pp. 113773, 2021.
[19] J. Fan, L. Wu, F. Zhang, H. Cai, X. Ma, and  H.Bai, “Evaluation and development of empirical models for estimating daily and monthly mean daily diffuse horizontal solar radiation for different climatic regions of China,” Renewable and Sustainable Energy Reviews, vol. 105, pp. 168-186, 2019.
[20] E. M. Saber, S. E. Lee, S. Manthapuri, W. Yi, and C. Deb, “PV (photovoltaics) performance evaluation and simulation-based energy yield prediction for tropical buildings,” Energy, vol. 71, pp. 588-595, 2014.
[21] J. Hofierka and J. Kaňuk, “Assessment of photovoltaic potential in urban areas using open-source solar radiation tools,” Renewable energy, vol. 34, no. 10, pp. 2206-2214, 2009.
[22] M. Šúri, T. A. Huld, E. D. Dunlop, and H. A. Ossenbrink, “Potential of solar electricity generation in the European Union member states and candidate countries,” Solar energy, vol. 81, no. 10, pp. 1295-1305, 2007.
[23] T. HongM. LeeC. KooK. Jeong, and J. Kim, “Development of a method for estimating the rooftop solar photovoltaic (PV) potential by analyzing the available rooftop area using Hillshade analysis,” Applied Energy, vol. 194, pp. 320-332, 2017.
[24] “Iranian National Code, chapter 19: Energy Conservation,” 2020; Available: https://www.bhrc.ac.ir/nbri/. [Accessed Oct.12, 2022]. (In Persian)
[25] B. S. Pawar and G. Kanade, “Energy optimization of building using design builder software,” International Journal of New Technology and Research, vol. 4, pp. 263152, 2018.
[26] F. R. d'Ambrosio AlfanoB. W. OlesenB. I. Palella, and D. Pepe, “Fifty years of PMV model: Reliability, implementation and design of software for its calculation,” Atmosphere, vol. 11, no. 1, pp. 49, 2020.
[27] B. Iooss, and P. Lemaître, “A review on global sensitivity analysis methods,” Uncertainty management in simulation-optimization of complex systems: Springer, vol. 59, pp. 101-122, 2015. [E-book] Available: https://doi.org/10.1007/978-1-4899-7547-8_5.
[28] Z. Elhassan, M. Zain, and K. Sopian, “Output energy of photovoltaic module directed at optimum slope angle in Kuala Lumpur, Malaysia,” Applied science, vol. 6, no. 2, pp. 104-9, 2011.
 
CAPTCHA Image