مقاومت جریان در یک رودخانۀ شنی- قلوه سنگی در حضور توده‌های گیاهی موضعی و شکل‌های بستر گوداب و خیزاب (مطالعۀ موردی: رودخانۀ ماربر پادنا) 

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی عمران دانشگاه علم و صنعت ایران

چکیده

هدف از این پژوهش برآورد مقاومت جریان در یک رودخانۀ‌ شنی قلوه‌سنگی از طریق خصوصیات نیم‌رخ سرعت در حضور شکل‌های سه‌بعدی بستر گوداب و خیزاب و توده‌های گیاهی پراکندۀ انعطاف‌پذیر مستغرق است. برای نیل به این هدف 39 نیم‌رخ سرعت در نقاط مختلف چهار بازۀ‌ کاملاً مستقل رودخانۀ ماربر پادنا مورد بررسی قرار گرفته‌است. نتایج نشان می‌دهد که عمق اعتبار قانون لگاریتمی به موقعیت محل اندازه‌گیری‌ها شامل ورودی گوداب و خروجی از آن بستگی دارد. شکل غالب میزان انحراف از این قانون در ورودی گودآب به‌سمت بالا، در خروجی گوداب به‌سمت پایین و خیزاب غالباً به‌سمت پایین مشاهده شده‌است که اثر مستقیم در برآورد مقاومت جریان دارد. هم‌چنین نتایج حاصل از بررسی مقاومت جریان حاکی از آن است که ضریب مقاومت جریان با نسبت انسداد به‌صورت نمایی با ضریب هم‌بستگی بزرگ‌تر از 8/0 در ارتباط است و نسبت انسداد می‌تواند پارامتر مناسبی در برآورد مقاومت جریان در رودخانه‌های شنی با توده‌های گیاهی پراکنده و شکل بسترهای سه‌بعدی گوداب و خیزاب باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Resistance to Flow in a Cobble-Gravel Bed River with Irregular Vegetation Patches and Pool-Riffle Bedforms (Case study: Padena Marbor River)

نویسندگان [English]

  • Hossein Afzalimehr
  • Kourosh Nosrati
  • Masoud Kazem
Faculty of Civil Engineering, Iran University of Science and Technology, Tehran, Iran.
چکیده [English]

This study was intended to estimate resistance to flow through velocity profile characteristics in a cobble-gravel bed river with 3D-Pool-Riffle bedforms and irregular distribution of flexible-submerged vegetation patches. To this end, a total of 39 velocity profiles consisting of four independent sections of Padena Marbor River have been studied. The finding showed that the depth of validity logarithmic law depends on the location of measurements including both inlet and outlet of the Pool. The predominant form of deviation from this law is frequently observed upwards at the inlet of the Pool and downwards at the outlet of the Pool and Riffle, which has a direct effect on the estimation of resistance to flow. Moreover, the results of resistance to flow revealed that the coefficients of resistance to flow are exponentially related to blockage area with a correlation coefficient greater than 0.8. Therefore, blockage area can be a suitable parameter in estimating resistance to flow in cobble-gravel bed rivers with 3D bedforms and irregular vegetations patches.

کلیدواژه‌ها [English]

  • Pool and Riffle
  • Resistance to flow
  • Padena Marbor River
  • Submerged vegetation patches
  • Logarithmic law
  • Blockage area
  1. Yen, B.C., "Open Channel Flow Resistance", Journal of hydraulic engineering, 128(1), pp. 20-39, (2002).
  2. Afzalimehr, H., Riazi, P., Jahadi, M., Singh, V.P., "Effect of Vegetation Patches on Flow Structures and the Estimation of Friction Factor", ISH Journal of Hydraulic Engineering:019, 27, pp. 1-11, (2019).
  3. Nikora, V., Larned, S., Nikora, N., Debnath, K., Cooper, G., Reid, M., "Hydraulic Resistance due to Aquatic Vegetation in Small Streams: Field Study", Journal of hydraulic engineering, 134(9), pp. 1326-1332, (2008).
  4. Afzalimehr, H., Moghbel, R., Gallichand, J., Jueyi, S.U., "Investigation of Turbulence Characteristics in Channel with Dense Vegetation", International Journal of Sediment Research, 26(3), pp. 269-282, (2011).
  5. Nikora, V., Larned, S., Debnath, K., Cooper, G., Reid, M., Nikora, N., "Effects of Aquatic and Bank-side Vegetation on Hydraulic Performance of Small Streams", in River Flow: Proceedings of the International Conference on Fluvial Hydraulics, Lisbon, Portugal, 6-8 September 2006. 2006. Taylor & Francis, 1, pp. 639-646,(2006).
  6. Kouwen, N., Unny, T. and Hill, H.M., "Flow Retardance in Vegetated Channels", Journal of the Irrigation and Drainage Division, 95(2), pp. 329-342, (1969).
  7. Wang, P. f., Wang, C. and Zhu, D.Z., "Hydraulic Resistance of Submerged Vegetation Related to Effective Height", Journal of Hydrodynamics, 22(2), pp. 265-273, (2010).
  8. Li, S., Shi, H., Xiong, Z., Huai, W., Cheng, N., "New Formulation for the Effective Relative Roughness Height of Open Channel Flows with Submerged Vegetation, Advances in Water Resources", Vol. 86, pp. 46-57, (2015).
  9. Fazlollahi, A., Afzalimehr, H. and Sui, J., "Effect of Slope Angle of an Artificial Pool on Distributions of Turbulence", International Journal of Sediment Research, 3(2) ,pp. 93-99, ( 2015).
  10. Afzalimehr, H., Maddahi, M.R., Sui, J., Rahimpour, M., "Impacts of Vegetation over Bedforms on Flow Characteristics in Gravel-bed Rivers", Journal of Hydrodynamics, 31(5), pp. 986-998, (2019).
  11. Jahadi, M., Afzalimehr, H. and Rowinski, P.M., "Flow Structure within a Vegetation Patch in a Gravel-Bed River", Journal of Hydrology and Hydromechanics, 67(2), pp. 154-162, (2019).
  12. Wolman, M.G., A Method of Sampling Coarse River‐bed Material, EOS, "Transactions American Geophysical Union", Vol. 35(6), pp. 951-956, (1954).
  13. Maddahi, M.R., Afzalimehr, and Rowinski, P.M., "Flow Characteristics over a Gravel Bedform: Kaj River case study, Acta Geophysica", Vol. 64(5), pp. 1779-1796, (2016).
  14. Afzalimehr, H., Barahimi, M. and Sui, J., "Non-uniform Flow over Ccobble Bed with Submerged Vegetation Strip", in Proceedings of the Institution of Civil Engineers-Water Management. Thomas Telford Ltd.(2019)
  15. Afzalimehr, H., Anctil, F., "Velocity Distribution and Shear Velocity Behaviour of Decelerating Flows over a Gravel Bed", Canadian Journal of Civil Engineering, 26(4), pp. 468-475, (1999).
  16. Afzalimehr, H. and Anctil, F., "Accelerating Shear Velocity in Gravel-bed Channels", Hydrological sciences journal, 45(1), pp. 113-124, (2000).
  17. Hinze, J.O., Turbulence (McGraw-Hill Series in Mechanical Engineering), Mcgraw-Hill College, (1975).
  18. Kironoto, B., Graf, W. H., and Rreynolds, "Turbulence Characteristics in Rough Uniform Open-channel Flow", Proceedings of the Institution of Civil Engineers-Water Maritime and Energy, 106(4), pp. 333-344, ( 1994).
  19. Afzalimehr, H. and Rennie, C.D., "Determination of Bed Shear Stress in Gravel-bed Rivers Using Boundary-layer Parameters", Hydrological sciences journal, 54(1), pp. 147-159, (2009).
  20. Hinze, J., Turbulence 2’nd edition, MacGraw Hill, New-York, (1975)
  21. Coleman, H. W., Moffat, R. J., and Kays, W.M., "The Accelerated Fully Rough Turbulent Boundary Layer", Journal of Fluid Mechanics, 82(3), pp. 507-528, (1977).
  22. Bassey, O. B., and Agunwamba, J., "Derived Models for the Prediction of Cole’s and Dip Parameters for Velocity Gradients Determination in Open Natural Channels", (1998).
  23. Afzalimehr, H., Mohammadzade, N., and Singh, V. P., "Experimental Investigation of Influence of Vegetation on Flow Turbulence", (2015).
  24. Afzalimehr, H., Heidarpour, M., and Farshi, S., "Resistance to Flow in Gravel-bed Rivers", Isfahan University of Technology-Journal of Crop Production and Processing, 7(1), pp. 19-31, (2003).
  25. Green, J. C., "Comparison of Blockage Factors in Modelling the Resistance of Channels Containing Submerged Macrophytes", River research and applications, (6)21, pp. 671-686, (2005).

 

 

 

CAPTCHA Image