تأثیر شکل منبع تخلیه بر مشخصات جریان در تخلیۀ سطحی پساب‌های با شناوری منفی

نوع مقاله : پژوهشی

نویسندگان

1 دانشگاه تربیت مدرس

2 دانشگاه فردوسی مشهد

3 علم و صنعت ایران

4 تربیت مدرس

5 سمنان

چکیده

در این مقاله نتایج آزمایشگاهی تأثیر شکل منبع تخلیه‌کننده بر تخلیۀ سطحی پساب‌های با شناوری منفی در محیطی ساکن و همگن برای دو مقطع مستطیل و ذوزنقه (مقطع هیدرولیکی بهینه) ارائه شده است. آزمایش‌ها در اتاق تاریک ثبت و با تحلیل رقومی پردازش شده است. رفتار جریان چگال برای عدد فرود دنسیمتریک کمتر از بیست گزارش شده است. بنابراین، خاصیت خود-همسانی جریان در این آزمایش‌ها برقرار نیست. پارامترهای مورد بررسی شامل الگوی جریان، پروفیل غلظت، تغییر عرض و مسیر حرکت جریان می‌باشند. نتایج بررسی رفتار جریان در مقاطع نشان می‌دهد علی‌رغم الگوی رفتاری مشابه، مقطع ذوزنقه از مشخصات هندسی و اختلاطی بهتری نسبت به مقطع مستطیل برخوردار است.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of Discharges Source Section on Flow Characteristics of Negatively Buoyant Effluent

نویسندگان [English]

  • Fatemeh Shacheri 1
  • Neda Sheykh rezazadeh nikou 2
  • Mohsen Saeedi 3
  • Jamal Mohammad Vali Samani 4
  • Ahmad Shacheri 5
1 Tarbiat Modares University
2 Ferdosi Mashhad
3 Science and Technology of Iran
4 Prof. of Water Structure Engineering, of Tarbiat Modares University (TMU).
5 Semnan
چکیده [English]

Results of a comprehensive experimental study on the impact of the outfall source shape on flow characteristics in surface discharge of negatively buoyant effluent in stagnant water were done on two sections of rectangular and trapezoidal (The optimal hydraulic cross section). These experiments were recorded in dark room and processed using digital analysis. Dense flow behavior was reported for Densimetric Froude number less than twenty so, the self-similarity property of flow is not established in these experiments. The parameters examined in this research include flow pattern, concentration profiles, change width and flow trajectory. The result of flow behavior in these sections indicates that despite similar behavioral pattern, geometric and mixing characteristics of trapezoid are better than rectangular.

کلیدواژه‌ها [English]

  • Dense flow
  • Discharges Source Cross Section
  • Flow properties
  • Surface Discharge
1. Crowe, A.T., Davidson, M.J., Nokes, R.I., "Maximum Eight and Return Point Velocities of Desalination Brine Discharges", 18th Australasian Fluid Mechanics Conference Launceston, Australia, (2012).
2. Global Water Intelligence Editorial Team. ed., Desalination markets: 2005–2015. Media Analytics Ltd, Oxford, UK, (2004).
3. Lattemann,S., Kennedy, M.D., Schippers, J.C., Amy G., Global Desalination Situation, Sustainability Sci. Eng. 2, http://dx.doi.org/10.1016/S1871-2711(0900202-5), (2010).
4. Oliver, C.J., Davidson, M.J., Nokes, R.I., "Predicting the Near-field Mixing of Desalination Discharges in a Stationary Environment", J. Desalination, Vol. 309, PP. 148-155, (2013).
5. Sajwani AA, The desalination plants of oman: past, present, and future. Desalination 120:53–59, (1998).
6. Gameson, A. L. H. Bacterial mortality, Part 1, in investigation of sewage discharge to some British coastal waters, Chapter 8mWRc Technical report TR 201, Medmenham, U.K, (1984).
7. USEPA. Ambient water quality criteria, EPA 440/5-80-015 to 079, U.S. Environmental Protection Agency, Washington, D.C, (1980a).
8. USEPA. Dilution models for effluent discharges, Office of Research and development, EPA/600/R-94/086, Environmental Protection Agency, Washington, D.C, (1994).
9. Kikkert, Gustaaf. A., "Buoyant Jets with Tow and Three-dimensional Trajectories, Ph.D. Thesis, University of Canterbury, Christchurch, New Zealand, (2006).
10. Shao, D., Law, A.W.K., "Mixing and Boundary Interactions of 30° and 45° Inclined Dense Jets", J. Environmental Fluid Mechanics, Vol. 10, No. 5, PP. 521-553, (2010).
11. Jones, G., Nash, D., Doneker, L., and Jirka, G.H., "Buoyant Surface Discharge into Water Bodies. I: Flow Classification and Prediction Methodology", J. Hydr. Eng., ASCE, Vol. 133, No. 9, PP. 1010-1020, (2007).
12. Baines, W.D., Turner, J.S., Campbell, I.H., "Turbulent Fountains in an Open Chamber", J. Fluid Mech, Vol. 212, PP. 557-592, (1990).
13. Bleninger, T. and Jirka, G., "Modelling and Environmentally Sound Management of Brine Discharges from Desalination Plants", J. Desalination. Vol. 221, PP. 585–597, (2008).
14. Cipollina, A., Brucato, A., Grisafi, F., Nicosia, S., "Bench-scale Investigation of Inclined Dense Jets", J. Hydr. Eng., ASCE, Vol. 131, No. 11, PP. 1017-1022, (2005).
15. Jirka, G.H., "Integral Model for Turbulent Buoyant Jets in Unbounded Stratified Flows Part 1: Single Round Jet", J. Environmental Fluid Mechanics, Vol. 4, PP. 1-56, (2004).
16. Kikkert, Gustaaf. A., "Buoyant Jets with Tow and Three-dimensional Trajectories", Ph.D. Thesis, University of Canterbury, Christchurch, New Zealand, (2006).
17. McLellan, T.N. and Randall, R.E., "Measurement of Brine Jet Height and Dilution", J. Water., Port, Coastal, Ocean Eng., Vol. 112, No. 2, PP. 200-216, (1986).
18. Roberts, P.J.W., Ferrier, A., and Daviero, G., "Mixing in Inclined Dense Jets", J. Hydraulic Engineering, Vol. 123, No. 8, PP. 693-699, (1997).
19. Oliver, C.J., Davidson, M.J., Nokes, R.I., "Predicting the Near-field Mixing of Desalination Discharges in a Stationary Environment", J. Desalination, Vol. 309, PP. 148-155, (2013).
20. Zhang, H., Baddour, E., "Maximum Penetration of Vertical Round Dense Jets at Small and Large Froud Numbers", J. Hydr. Eng. Vol. 124, No. 5, PP. 550-553, (1998).
21. Doneker RL, Jirka GH., "CORMIX-GI Systems for Mixing Zone Analysis of Brine Waste Water Disposal", Desalination, Vol. 139, PP. 263–274, (2001).
22. Amon, R.M.W., Benner, R., "Seasonal Patterns of Bacterial Abundance and Production in the Mississippi River Plume and Their Importance for the Fate of Enhanced Primary Production", FEMS Microbiol, Ecol. Vol. 35, No. 3, PP. 289-300, (1998).
23. Chu, V.H. and Jirka, G.H., "Surface Buoyant Bets. Encyclopedia of Fluid Mechanics", Chap. 25, Gulf, Houston, (1986).
24. Jirka, G.H., "Buoyant Surface Discharges into Water Bodies", II: jet integral model. J. Hydr. Eng. Vol. 133, No. 9, PP. 1021-1036, (2007a).
25. Nash, J.D., Jirka, G.H., "Buoyant Surface Discharges into Unsteady Ambient Flows", J. Dyn. Atmos. Oceans 24 (1-4), PP. 75-84, (1996).
26. Gholamreza-Kashi, S., Martinuzzi, R.J., Baddour, R.E., "Mean Flow Field of a Nonbuoyant Rectangular Surface Jet", J. Hydraulic Engineering, Vol. 133, No. 2, PP. 234-239, (2007).
27. Kassem, J.A.M., and Khan, J.A., “Three-Dimensional Modeling of Negatively Buoyant Flow in Diverting Channels", J. Hydraulic Engineering, Vol. 129, No. 12, PP. 936-947, (2003).
28. Law Adrian W.K., Fun Ho W., and Monismith, S.G., "Double Diffusive Effect on Desalination Discharges", J. Hydraulic Engineering, Vol. 130, No. 5, PP. 450-457, (2004).
29. Abessi, O., Saeedi, M., Bleninger, T., Davidson, M., "Surface Discharge of Negatively Effluent in Unstratified Stagnant Water", J. Hyro-Environ. Res. Vol., 6, PP. 181-193, (2012).
30. Davidson M.J., Wang Y. and Pun K.L., A Lwngth-Scale Model for Merging of Jet in a Coflow. J Engineering Mechanics, PP. 215-218, (1995).
31. Jirka, G. H., User’s manual for CORMIX: A hydrodynamic mixing zone model and decision support system for pollutant discharges into surface waters. DeFrees Hydraulics Laboratory, Cornell University, Ithaca, N.Y, (1996).
32. Roberts, P. J. W, Snyder, W.H and Baumgartner D.J., "Ocean Outfalls. I: Submerged Wastfield Formation", J. Hydro. Eng., ASCE, 115(1), PP. 49-69, (1989).
33. Roberts, P. J. W, Snyder, W.H. and Baumgartner, D.J., "Ocean Outfalls. II: Soatial Evolution of Submerged Wastfield", J. Hydr. Eng., ASCE, 115(1), PP. 26-47, (1989).
34. Roberts, P. J. W, Snyder, W.H. and Baumgartner, D.J., "Ocean Outfalls. III: Effect of Diffuser Design on Submerged Waste Field", J. Hydr. Eng., ASCE, 115(1), 1-25.34, (1989).
35. Tian, X., Roberts P.J.W and Daviro, J., "Marin Waste Water Discharge from Multiport Diffusers", IV: stratified flowing water. J. Hydr. Eng., ASCE, 132(4), PP. 411-419, (2006).
36. Chu, V.H. and Goldberg, M.B., "Buoyant Forced-plumes in Cross flow", J. Hyd. Div., ASCE, 100(HY9), 1203-1214, (1974).
37. Wood, I. R. and Bell. R. G. and Wilkinson D.L., "Ocean Disposal of Wastewater", Advance series on ocean engineering, Book, volume 8, (1993).
38. Davidson, M.J., "The Behavior of Single and Multiple", horizontally discharged, buoyant flows in a non-turbulent co flowing ambient fluid. Ph.D. thesis, Dept. of Civil Engineering, Univ. of Canterbury, Christchurch, New Zealand, (1989).
39. Lee, J. H. W. and Cheung, V., "Generalized Lagrangian Model for Buoyant Jets in Current", Journal of Environmental Engineering, ASCE, 116(6), PP. 1085-1105, (1990).
40. Baumgartner, D. J., Frick W. E. and Roberts, P. J. W., "Dilution Models for Effluent Discharges (Second Edition)", June 11, 1993. U.S. EPA. Washington, D.C. EPA Report #600/R-93/139. 181, (1993).
41. غفاریان‌روح پرور، ح.، فغفور مغربی، م. و نصیریان، ع.، «برآورد دانه‏‌بندی و نحوۀ گسترش رسوب در مقطع خروجی و کف حوضچۀ ته‌‏نشینی بااستفاده از مدل اولری- لاگرانژی»، نشریۀ مهندسی عمران و محیط زیست تبریز، ج. 42، ش. 3، (1391).
42. Miller, R.S., Madnia, C. K. and Givit, P., "Numerical Simulation of Non-circular Jets", J. Computers and Fluids. Vol. 24, No. 1, PP. 1-25, (1995).
43. Nokes, R., Image Stream Version 7.00, User’s Guide, Department of civil and Natural Resources Engineering University of Canterbury, Christchurch, New Zealand, (2008).
44. Jirka, G.H., Adams, E.E., and Stolzenbach, K.D., "Buoyant Surface Jets", J. Hydr. Div., Vol. 107, No. 11, PP. 1467-1487, (1981).
45. Jones, G.R., Nash, J.D., and Jirka, G.H., "CORMIX3: An Expert System for Mixing Zone Analysis and Prediction of Buoyant Surface Discharge", DeFrees Hydraulics Laboratory, Cornell University, (1996).
46. Xiao, J., Travis, J.R. and Breitung, W., 2009. Non-Boussinesq Integral Model for Horizontal Turbulent Buoyant Round Jets. Science and Technology of Nuclear Installations, doi:10.1155/2009/862934.
47. Michas, S.N., Papnicolaou, P.N., "Horizontal Round Heated Jets into Calm Uniform Ambient", J. Desalination. Vol. 248, PP. 803-815, (2009).
48. Fan, L.N., "Turbulent Buoyant Jets into Stratified or Flowing Ambient Fluids", KH-R-15, W.M. Keck Laboratory of Hydraulic and Water Resource, California Institute of Technology, Pasadena, California, (1967).
49. Davidson, M.J., and Pun, K.L., "Location Discharge Trajectories in Still and Moving Ambient Fluids", J. Hydr. Eng. Vol. 126, No. 7, PP. 513-524, (2000).
50. Lee, J.H.W. and Chu, V.H., "Turbulent Jets and Plumes a Lagrangian Approach", Kluweer Academic Publishers, Boston, (2003).
CAPTCHA Image