اصلاح یک مدل رفتاری الاستو پلاستیک سخت‌شونده- نرم‌شونده کرنشی برای بتن پلاستیک

نوع مقاله : پژوهشی

نویسندگان

1 فردوسی مشهد

2 دانشگاه فردوسی مشهد

چکیده

بتن پلاستیک، بتنی با مقاومت کمتر، شکل‌پذیری بالاتر و نفوذپذیری کمتر از بتن معمولی، یکی از روش‌های مؤثر برای کنترل تراوش سازه‌های آبی احداث‌شده روی پی‌های آبرفتی تغییر شکل‌پذیر می‌باشد. با توجه به تفاوت‌های رفتاری بتن پلاستیک نسبت به بتن‌های معمولی، اکثر مدل‌های رفتاری پیشنهادشده برای بتن‌های معمولی، توانایی بسیار محدودی در شبیه‌سازی رفتار تغییرشکلی مصالح بتن پلاستیک دارند و در اکثر موارد مدل سادۀ مورکولمب را برای این مصالح درنظر می‌گیرند. از این‌رو تعیین یک مدل رفتاری مناسبی که بتواند رفتار تنش-کرنش و کرنش حجمی-محوری مصالح بتن پلاستیک را به‌طور مناسبی پیش‌بینی نماید ضروری می‌باشد. در این مطالعه با استفاده از یک سری نتایج آزمون‌های سه‌محوری زهکشی‌شده بر روی مصالح بتن پلاستیک، رفتار مصالح با یک مدل الاستوپلاستیک که ویژگی‌های رفتاری سخت‌شوندگی و نرم‌شوندگی کرنشی مصالح در آن درنظر گرفته می‌شود بااستفاده از برنامۀ تفاضل محدود FLAC2D شبیه‌سازی‌ شدهاست. بدین منظور با پیشنهاد توابع اصطکاک، چسبندگی و اتساع بسیج‌شدۀ ویژه‌ای برای مدل رفتاری مذکور، سطح تسلیم و پتانسیل آن به‌گونه‌ای اصلاح ‌شده‌است که قابلیت مناسبی در شبیه-سازی رفتار تنش-کرنش و کرنش محوری-حجمی بتن پلاستیک را در شرایط بارگذاری آزمون‌ سه‌محوری زهکشی‌شده داشته باشد. نتایج این شبیه‌سازی نشان می‌دهد، مدل رفتاری اصلاح‌شده کارایی بسیار مناسبی را در شبیه‌سازی رفتار مصالح بتن پلاستیک دارد.

کلیدواژه‌ها


عنوان مقاله [English]

A Strain Hardening/Softening Elasto-Plastic Constitutive Model for Plastic Concrete Materials

نویسندگان [English]

  • Masoud Mehmandoost Kotlar 1
  • Ali Akhtarpour 2
  • Morteza Salari 1
1 Ferdowsi University of mashhad
2 Ferdowsi University of Mashhad
چکیده [English]

In this research, the behavior of plastic concrete materials with a strain Hardening/Softening Elasto-Plastic constitutive model are investigated using FLAC software based on a series of drained triaxial test results. The constitutive model is based on the mobilized strength (friction and cohesion) and mobilized dilatation angle concepts. The results indicate that the assumed functions of modified mobilized friction angle and mobilized cohesion (The Yield function of the model) which are common for geotechnical materials, can predict stress-strain behavior with a sufficient accuracy. However, they cannot simulates the Volume changes due to dilation effects accurately, especially for plastic concrete with a relatively high stiffness and strength. Therefore, the potential function of the model is modified. The stress-strain and Volume strains that have been obtained from the modified model are in good agreement with the experimental data, especially for soft plastic concrete, as well as for hard plastic concrete in a low confining pressure.

کلیدواژه‌ها [English]

  • Elasto-Plastic Constitutive Model
  • Plastic Concrete
  • Strain Hardening/Softening
  • Triaxial Tests
1. Imran, I., and Pantazopoulou, S., "Experimental Study of Plain Concrete under Triaxial Stress," ACI Materials Journal-American Concrete Institute, Vol. 93, PP. 589-601, (1996).
2. Bazant, Z. P., and Oh, B. H., "Strain-Rate Effect in Rapid Triaxial Loading of Concrete," Journal of Engineering Mechanics-ASCE, Vol. 108, PP. 764-782, (1982).
3. Gerstle, K. H., "Simple Formulation of Biaxial Concrete Behavior," Journal Proceedings, PP. 62-68, (1981).
4. Chen, W., and Saleeb, A., "Constitutive equations for engineering materials", Vol. 1, PP. 7-573, Elasticity and modelling: Elsevier Publications, (1994)
5. Bangash, M., "Concrete and Concrete Structures: Numerical Modelling and APPlications", (1989).
6. Kang, H. D., and Willam, K. J., "Localization Characteristics of Triaxial Concrete Model", Journal of engineering mechanics, Vol. 125, PP. 941-950, (1999).
7. Imran, I., and Pantazopoulou, S., "Plasticity Model for Concrete under Triaxial Compression", Journal of engineering mechanics, Vol. 127, PP. 281-290, (2001).
8. Grassl, P., Lundgren, K., and Gylltoft, K., "Concrete in Compression: a Plasticity Theory with a Novel Hardening Law", International Journal of Solids and Structures, Vol. 39, PP. 5205-5223, (2002).
9. Bažant, Z. P., and Bhat, P. D., "Endochronic Theory of Inelasticity and Failure of Concrete", Journal of the Engineering Mechanics Division, Vol. 102, PP. 701-722, (1976).
10. Rivlin, R., "Some Comments on the Endochronic Theory of Plasticity", in Collected Papers of RS Rivlin, ed: Springer, PP. 1592-1609, (1997).
11. Valanis, K., and Lee, C. F., "Some Recent Developments of the Endochronic Theory with APPlications", Nuclear Engineering and Design, Vol. 69, PP. 327-344, (1982).
12. Wu, H. C., and Komarakulnanakorn, C., "Endochronic Theory of Continuum Damage Mechanics", Journal of engineering mechanics, Vol. 124, PP. 200-208, (1998).
13. Yazdani, S., and Schreyer, H., "Combined Plasticity and Damage Mechanics Model for Plain Concrete", Journal of engineering mechanics, Vol. 116, PP. 1435-1450, (1990).
14. Voyiadjis, G. Z., and Abu-Lebdeh, T. M., "Plasticity Model for Concrete Using the Bounding Surface Concept", International Journal of Plasticity, Vol. 10, PP. 1-21, (1994).
15. Lee, J., and Fenves, G. L., "Plastic-Damage Model for Cyclic Loading of Concrete Structures", Journal of engineering mechanics, Vol. 124, PP. 892-900, (1998).
16. Krätzig, W. B., and Pölling, R., "Elasto-Plastic Damage-Theories and Elasto-Plastic Fracturing-Theories–A Comparison", Computational materials science, Vol. 13, PP. 117-131, (1998).
17. Park, H., and Kim, H., "Microplane Model for Reinforced-Concrete Planar Members in Tension-Compression", Journal of Structural Engineering, Vol. 129, PP. 337-345, (2003).
18. Ozbolt, J., and Bazant, Z. P., "Microplane Model for Cyclic Triaxial Behavior of Concrete", Journal of engineering mechanics, Vol. 118, PP. 1365-1386, (1992).
19. Caner, F. C., and Bazant, Z. P., "Microplane Model M4 for Concrete. II: Algorithm and Calibration", Journal of Engineering Mechanics, Vol. 126, PP. 954-961, (2000).
20. Bazant, Z. P., Caner, F. C., Carol, I., Adley, M. D., and Akers, S. A., "Microplane Model M4 for Concrete. I: Formulation with Work-Conjugate Deviatoric Stress", Journal of Engineering Mechanics, Vol. 126, PP. 944-953, (2000).
21. De Borst, R., "Integration of Plasticity Equations for Singular Yield Functions", Computers & structures, Vol. 26, PP. 823-829, (1987).
22. Matzenmiller, A., and Taylor, R. L., "A Return MaPPing Algorithm for Isotropic Elastoplasticity", International journal for numerical methods in engineering, Vol. 37, PP. 813-826, (1994).
23. Nyssen, C., "An Efficient and Accurate Iterative Method, Allowing Large Incremental Steps, to Solve elasto-plastic problems", Computers & Structures, Vol. 13, PP. 63-71, (1981).
24. Simo, J., and Taylor, R., "A Return MaPPing Algorithm for Plane Stress Elastoplasticity", International Journal for Numerical Methods in Engineering, Vol. 22, PP. 649-670, (1986).
25. Wissmann, J. W., and Hauck, C., "Efficient Elastic-Plastic Finite Element Analysis with Higher Order Stress-Point Algorithms", Computers & Structures, Vol. 17, PP. 89-95, (1983).
26. Li, H.-z., Xiong, G.-d., and Zhao, G.-p., "An Elasto-Plastic Constitutive Model for Soft Rock Considering Mobilization of Strength", Transactions of Nonferrous Metals Society of China, Vol. 26, PP. 822-834, (2016).
27. Liu, L. J., Ye, X. G., Chong, X., Jiang, Q., and Xie, L. L., "Nonlinear Numerical Simulation Analysis on Mechanical Behavior of High-Strength Concrete Beams Reinforced by HRBF500 Steel", APPlied Mechanics and Materials, PP. 1607-1613, (2012).
28. Zhang, J., Hu, L., Pu, J., and Yin, K., "Behavior of Plastic Concrete Diaphragm Walls in Three Gorges Project", Tsinghua Science and Technology, Vol. 4, PP. 1367-1370, (1999).
29. Duncan, J. M., and Chang, C.-Y., "Nonlinear Analysis of Stress and Strain in Soils", Journal of the soil mechanics and foundations division, Vol. 96, PP. 1629-1653, (1970).
30. Bažant, Z. P., and Shieh, C.-L., "Endochronic Model for Nonlinear Triaxial Behavior of Concrete", Nuclear Engineering and Design, Vol. 47, PP. 305-315, (1978).
31. Bazant, Z., "Endochronic Inelasticity and Incremental Plasticity", International Journal of Solids and Structures, Vol. 14, PP. 691-714, (1978).
32. Bažant, Z. P., and Bhat, P. D., "Prediction of Hysteresis of Reinforced Concrete Members", Journal of the Structural Division, Vol. 103, PP. 153-167, (1977).
33. Gambarova, P., and Floris, C., "Microplane Model for Concrete Subject to Plane Stresses", Nuclear Engineering and Design, Vol. 97, PP. 31-48, (1986).
34. Carol, I., Prat, P. C., and Bažant, Z. P., "New Explicit Microplane Model for Concrete: Theoretical Aspects and Numerical Implementation", International Journal of Solids and Structures, Vol. 29, PP. 1173-1191, (1992).
35. Vermeer, P. A., and De Borst, R., "Non-Associated Plasticity for Soils, Concrete and Rock", HERON, Vol. 29, Num. 3; PP. 1-64, (1984).
36. طرح احداث سد مخزنی برروی رودخانۀ سومبار، گزارش طراحی بدنۀ سد، شرکت مهندسین مشاور مهار آب، (1386).
37. ICOLD, "Filling Materials For Watertight Cut-Off Walls", International Commision on Large Dams, bulletin No.51, (1985).
38. Janbu, N., "Soil Compressibility as Determined by Oedometer and Triaxial Tests", Proceedings of the European conference on soil mechanics and foundation engineering, PP. 19-25, (1963).
39. Hansen, J. B., "Some Stress-Strain Relationships for Soils", Intl Conf Soil Mech & Fdn Eng Proc, (1965).
40. Rowe, P., "Theoretical Meaning and Observed Values of Deformation Parameters for Soil", Proceedings of the Stress-Strain Behaviour of Soils, Roscoe Memorial Symposium, PP. 143-194, (1971).
41. Itasca, Consulting, and Group, "FLAC—Fast Lagrangian Analysis of Continua, Version 7.0 User’s Guide", Itasca, Minneapolis, Minn, USA, (2011).
CAPTCHA Image