تأثیر زلزله های حوزۀ دور و نزدیک بر تحریک غیریکنواخت سدهای بتنی وزنی

نوع مقاله : پژوهشی

نویسندگان

1 دانشگاه صنعتی نوشیروانی بابل

2 موسسه آموزش عالی طبری

چکیده

 در این مقاله به بررسی ویژگی‌های هیدرولیکی جریان عبوری از درون یک سیستم مرکب کالورت دایره­ای-سرریز به­صورت آزمایشگاهی برای 12 مدل پرداخته شد. منحنی دبی اشل برای مدل­های مختلف ارائه شد. نتایج نشان داد که به ازای یک هد مشخص دبی سازه ترکیبی بیشتر از مجموع دبی کالورت و دبی سرریز بود. همچنین، ضریب دبی برای سازۀ ترکیبی بین 25/0 تا 73/0، برای سرریز بین 25/0 تا 63/0 و برای کالورت 33/0 تا 77/0 تغییر می­کرد. پارامتر بدون بعد  (هد به قطر) بیشترین تأثیر را بر روی ضریب دبی داشته است. علاوه­براین، معادلات رگرسیونی برای تخمین ضریب دبی ارائه شدند.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Far and Near Fault Earthquake on Non-uniform Excitation of Concrete Gravity Dams

نویسندگان [English]

  • Tahmineh Abbasi 1
  • Bahram Navayi Neya 1
  • Leyla Kalani Sarokolayi 2
1 Babol Noshirvani University of Technology
2 Tabari
چکیده [English]

In this research, the hydraulic characteristics of flow through circular culverts and over broad crested weir are experimentally investigated for 12 models. Stage discharge rating curve was presented for each model. The results show that for a specific head, the discharge of combined structure is greater than the summation of discharge of weir and culvert. Also, the discharge coefficient for the combined structure is varying from 0.25 to 0.73 and for the weir is varying from 0.25 to 0.63 and for the culvert is varying from 0.33 to 0.77. The dimensionless parameter H/D (head to diameter) has the greater influence on discharge coefficient. In addition, regression equations are presented for estimation of discharge coefficient.

کلیدواژه‌ها [English]

  • Non-uniform excitation
  • Dam-Reservoir interaction
  • Lagrangian approach
  • Concrete gravity dam
  • Near and far fault earthquake
1. کلانی ساروکلایی، ل.؛ "تحلیل دینامیکی غیرخطی سدهای بتنی وزنی تحت حرکات ناهمگون انتقالی و دورانی زلزله "، پایان‌نامه دکتری تخصصی، دانشگاه مازندران، 1392.
 
2. Alves, S. W.; “Nonlinear analysis of Pacoima dam with spatially nonuniform ground motion”, Ph. D thesis, California Institute of Technology, 2005.
 
3. Harichandran, R. S.; “Spatial variation of earthquake ground motion, what is it, how do we model it, and what are its engineering Implications”, Department of Civil and Enviromental Engineering, Michigan State Univ.,East Lansing, Mich, 1999.
 
4. Huang, J.; “Earthquake performance assessment of concrete gravity dams subjected to spatially varying seismic ground motions”, Structure and Infrastructure Engineering, p.p. 1-16, 2002.
 
5. Zerva, A. and Zervas, V.; “Spatial variation of seismic ground motions: An overview”, Applied Mechanics Reviews, 55(3), p.p. 271-297, 2002.
 
6. Bayractar, A. Dmanogl, A. and Calayir, Y.; “Asynchronousdy dynamic analysis of dam – reservoir – foundation systems by the Lagrangian approach”, Coumputers and Structures, 58(5), p.p. 925 -935, 1996.
 
7. Bayractar, A. Dmanogl, A. and Calayir, Y.; “Asynchronousdy dynamic analysis of dam – reservoir – foundation systems by the Lagrangian approach”, Coumputers and Structures, 58(5), p.p. 925 -935, 1996.
 
8. Bayractar, A. and Dumanoglu, A.; “The effect of the asynchronous ground motion on hydrodynamic pressures”, Computers and Structures, 68(1), p.p. 271-282, 1998.
 
9. Bilici, Y., et al.; “Stochastic dynamic response of dam – reservoir – foundation systems to spatially Varying earthquake ground mtions”, Soil Dynamics and Earthquake Engineering, 29(3), p.p. 444-458, 2009.
 
10. Chopra, A. K. and Wang, J. T.; “Eearthquake response of arch dams to spatially varying ground motion”, Eearthquake Engineering and Structural Dynamics, 39(8), p.p. 887-906, 2010.
 
11. Chen, M. T.and Harichandran, R. S.; “Response of an earth dam to spatially varying earthquake ground motion”, Journal of Engineering Mechanics, 127(9), p.p. 932-939, 2001.
 
12. Bogdanoff, J. L., Goldberg, J. E. and Schiff, A. J.; “The Effect of Ground Transmission Time on the Response of Long Structures”, Bull. Seism. Soc. Am., 55, p.p. 627-640, 1965.
 
13. Wang, J. T. and Chopra, A. K.; “Linear analysis of concrete arch dams including dam-water-foundation rock interaction considering spatially varying ground motion”, Earthquake Engineering and Structural Dynamics, 39(7), p.p. 731-750, 2010.
 
14. Ghobarah, A. and Ghaemian, M.; “Travelling wave effect on hydrodynamic forces on dams”, Journal of European Engineering, XIII(3), p.p. 22-34, 1999.
 
15. Mirzabozorg, H. and Varmazyari, M.; “Dam-reservoir-massed foundation system and travelling wave along reservoir bottom”, Soil Dynamic and Earthquake Engineeing, 30(8), p.p. 746-756, 2010.
 
16. کلانی ساروکلایی، ل.، نوائی‌نیا، ب.؛ "تحلیل دینامیکی سدهای بتنی وزنی در اثر حرکات
غیریکنواخت انتقالی و دورانی زلزله با درنظر گرفتن اندرکنش سد و مخزن"، نشریه علمی پژوهشی امیرکبیر- مهندسی عمران و محیط زیست، دوره 48، شماره 1، صفحات 103-91.
 
17. Harichandran, R. S. and Vanmarcke, E. H.; “Stochastic variation of earthquake ground motion in space and time”, J. Engrg. Mech., ASCE, 112(2), p.p. 154-174, 1986.
 
18. Harichandran, R. S., et al.; “Response of long-span bridges to spatially varing ground motion,” J. Struct. Eng, ASCE, 122(5), p.p. 476-484, 1996.
 
19. Hao, H., Oliviera, C. S. and Penzien, J.; “Multiple – station ground motion processing and simulation based on SMART-1 array data,” Nuclear Engrg. And Des., 111(3), p.p. 293-310, 1989.
 
20. Hindy, A. and Novak, M.; “Earthquake response of buried insulated pipes”, J. Engrg. Mech. Div., ASCE, 106(6), p.p. 1135-1149, 1980.
 
21. Abrahamson, N. A.; “Spatial variation of multiple support inputs”, Proc., 1st U.S. Seminar on Seismic Evaluation and Retrofit of Steel Bridges, Dept. of Civ. Engrg., University of California at Berkeley, Calif., and California Department of Transportation, San Francisco, 1993.
 
22. Santa-Cruz, S., Heredia-Zavoni, E. and Harichandran, R. S.; “Low-frequency behavior coherency for strong ground motion in Mexico City and Japan,” 12WCEE, No.0076, 2000.
 
23. Bilici, Y., et al.; “Stochastic dynamic response of dam – reservoir – foundation systems to spatially Varying earthquake ground mtions”, Soil Dynamics and Earthquake Engineering, 29(3), p.p. 444-458, 2009.
 
24. Fenves, G. and Chopra, A. K.; “Earthquake analysis of concrete gravity dams including reservoir bottom absorption and dam-water-foundation rock interaction”, Earthquake Engineering and Structural Dynamics, 12(5), p.p. 663-680, 1984.
 
25. El-Aidi, B. and Hall, J. F.; “Non-linear earthquake response of concrete gravity dams part 1: Modelling”, Earthquake Engineering and Structural Dynamics, 18(6), p.p. 837-851, 1989.
 
26. Chopra, A. K.; “Dynamic of structures, theory and application to earthquake engineering”, 3rd ED., Prentic Hall of India, 2008.
 
27. نوائی‌نیا، ب.؛ "تحلیل هیدرودینامیک سد و مخزن به روش لاگرانژی "، پایان‌نامه کارشناسی ارشد، دانشگاه صنعتی امیرکبیر، 1369.
 
28. احمدی، م. ت.، نوائی‌نیا، ب.؛ "تحلیل دینامیکی سد و مخزن به روش لاگرانژی "، مجله بین المللی مهندسی دانشگاه علم و صنعت، جلد 6، شماره 1، 1374.
 
29. Hinton, E., Rock, T. and Zienkiewicz, O.; “A note on mass lumping and related processes in the finite element method”, Earthquake Engineering and Structural Dynamics, 4(3), p.p. 245-249, 1976.
 
30. Wilson, E. L. and Khalvati, M.; “Finite elements for the dynamic analaysis of fluid-solid systems”, International Journal for Numerical Methods in Engineering, 19(11), p.p. 1657-1668, 1983.
 
31. Beer, G.; “An isoparametric joint/interface element for finite element analysis”, International Journal for Numerical Methods in Engineering, 21(4), p.p. 585-600, 1985.
CAPTCHA Image