توسعۀ مدل فرا ابتکاری انفیس- الگوریتم ژنتیک برای پیش‌بینی عمق آبشستگی در مجاورت لوله‌های مستغرق

نوع مقاله : پژوهشی

نویسندگان

1 گروه مهندسی آب، واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه.

2 گروه مهندسی آب، واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه

چکیده

در نواحی ساحلی، عبور خطوط لوله مستغرق نفت و گاز بسیار رایج است و وقوع آبشستگی در اطراف لوله پایداری آنها را تهدید می­کند. در این مطالعۀ یک مدل فرا ابتکاری برای پیش‌بینی عمق آبشستگی در اطراف لوله‌های افقی مستغرق توسعه داده می‌شود. مدل عددی با ترکیب مدل سیستم استنباط فازی عصبی تطبیقی (انفیس) و الگوریتم ژنتیک تولید می‌شود. علاوه بر این در مطالعۀ حاضر برای ارزیابی دقّت مدل‌های عددی از شبیه‌سازی‌های مونت کارلو استفاده شد. در مقابل برای اعتبار سنجی نتایج مدل‌های مذکور از روش اعتبار سنجی متقابل با 6=k بهره گرفته شد. سپس 6 مدل عددی مختلف توسعه داده می‌شود. سرانجام با تجزیه‌وتحلیل نتایج مدل‌های عددی، مدل برتر معرفی شد. مدل برتر عمق آبشستگی را با دقّت قابل قبولی شبیه­سازی کرد. این مدل مقادیر آبشستگی را با استفاده از کلیه پارامترهای ورودی شبیه­سازی کرد. به‌عنوان‌مثال برای مدل برتر مقادیر ضریب همبستگی و شاخص پراکندگی به ترتیب مساوی با 974/0 و 090/0 محاسبه شد. علاوه بر این، فاصله بین لوله و بستر رسوبی قبل از آبشستگی به قطر لوله (e/D) به­عنوان مؤثرترین پارامتر ورودی شناسایی شد

کلیدواژه‌ها


عنوان مقاله [English]

Developing of ANFIS-Genetic Algorithm Meta-Heuristic Model for Predicting the Scour Depth in Vicinity of Submarine Pipelines

نویسندگان [English]

  • ehsan yarmohamadi 1
  • ahmad rajabi 2
  • Mohammad Ali Izadbakhsh 1
1 Department of Water Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
2 Department of Water Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
چکیده [English]

In coastal areas, passing oil and gas submarine pipelines is quite common and scouring around them threatens the stability of the submarine pipes. In this study, a meta-heuristic model is developed in order to predict the scour pattern in vicinity of the submarine pipelines. The model is produced using combination of adaptive Neuro-fuzzy inference system (ANFIS) and genetic algorithm (GA). Additionally, in this article, Monte Carlo simulations (MCs) were utilized to evaluate the accuracy of numerical models. On the other hand, in order to validate the numerical results, the k-fold cross-validation (k=6) was used. Next, six different numerical models were developed. Finally, by analyzing the numerical results, the superior model was introduced. The superior model simulated the scour depth with reasonable accuracy. The model simulated the scour depth by employing all input parameters. For example, correlation coefficient and scatter index for superior model were respectively calculated 0.974 and 0.090. In addition, distance between pipe and bed before scouring to pipe diameter (e/D) was identified as the most effective input parameter.

کلیدواژه‌ها [English]

  • scour
  • Genetic algorithm
  • ANFIS
  • simulation
  • Meta-heuristic model
1. Bijker E. W., Leeuwestein W., "Interaction between pipelines and the seabed under the influence of waves and currents", In Seabed mechanics, pp. 235-242. Springer Netherlands, (1984).
2. Fredsoe J., Hansen E. A., Mao Y. Sumer B.M., "Three-dimensional scour below pipelines", Journal of offshore mechanics and arctic engineering, Vol. 110, No. 4, pp.373-379, (1988).
3. Chiew Y. M., "Mechanics of local scour around submarine pipelines", Journal of Hydraulic Engineering, Vol. 116, No. 4, pp.515-529, (1990).
4. Olsen N. R., Melaaen M.C., "Three-dimensional calculation of scour around cylinders", Journal of Hydraulic Engineering, Vol. 119, No. 9, pp.1048-1054, (1993).
5. Li F., Cheng L., "Numerical model for local scour under offshore pipelines", Journal of Hydraulic Engineering, Vol. 125, No. 4, pp. 400-406, (1999).
6. Myrhaug D., Rue H., "Scour below pipelines and around vertical piles in random waves", Coastal Engineering, Vol. 48, pp. 227-242, (2003).
7. Teh T. C., Palmer A. C., Bolton M. D., Damgaard J. S., "Stability of submarine pipelines on liquefied seabeds", Journal of waterway, port, coastal, and ocean engineering, Vol. 132, No. 4, pp.244-251, (2006).
8. Dey S., Singh N. P., "Clear-water scour depth below underwater pipelines", Journal of Hydro-Environment Research, Vol. 1, No. 2, pp.157-162, (2007).
9. Zhang Q., Draper S., Cheng L., An H., "Time Scale of Local Scour around Pipelines in Current, Waves, and Combined Waves and Current", Journal of Hydraulic Engineering, Vol. 143, No. 4, pp.04016093, (2016).
10. Lee J. Y., Hardjanto F. A., Cossu R., Chai S., Leong Z. Q., Forrest A. L., "Current-induced scour beneath initially elevated subsea pipelines", Applied Ocean Research, Vol. 82, pp.309-324, (2019).
11. Mir Alizadeh Ovrang S. M. R., Lotfollahi Yaghin M. E., Hosseinzadeh Dalir, E., Hakimzadeh H., "Investigation of scour process problem around sea pipes by considering impermeable plate under the pipe", Journal of Civil Engineering-Modarres. Vol. 13, No. 4, pages 125-136, (2013)
12. Hedayat Bahrami P., Katourani S., Hosseinzadeh Dalir E., Farsadi Zadeh D., "Experimental study on the effects of collision angle of flow in scouring of submerged pipes", Soil and water sciences. Vol. 26, No. 2.4, pp. 123-133, (2016).
13. Najafzadeh M., Barani G. A., Azamathulla H. M., "Prediction of pipeline scour depth in clear-water and live-bed conditions using group method of data handling", Neural Computing and Applications, Vol. 24, No. 3-4, pp.629-635, (2014).
14. Haghiabi A. H., "Prediction of river pipeline scour depth using multivariate adaptive regression splines", Journal of Pipeline Systems Engineering and Practice, Vol. 8, No. 1, pp. 04016015, (2016).
15. Najafzadeh M., Sarkamaryan S., "Extraction of optimal equations for evaluation of pipeline scour depth due to currents", In Proceedings of the Institution of Civil Engineers-Maritime Engineering, Vol. 171, No. 1, pp. 1-10, (2018).
16. Jang J. S., "ANFIS: adaptive-network-based fuzzy inference system", IEEE transactions on systems, man, and cybernetics, Vol. 23, No. 3, pp. 665-685, (1993).
17. Dunn J. C. U., "A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters", J. Cybern., Vol. 3, pp. 32-57, (1973).
18. Bezek J. C., "Pattern Recognition with Fuzzy Object Function Algorithms", New York: Plenum, (1981).
19. Holland J., "Adaptation in natural and artificial systems", University of Michigan Press, Ann Arbor, USA, (1975).
20. Moncada-M A. T., Aguirre-Pe J., "Scour below pipeline in river crossings", Journal of Hydraulic Engineering, Vol. 125, No. 9, pp. 953-958, (1999).
CAPTCHA Image