ارزیابی عملکرد نانوسیلیکات در ارتقای خواص مکانیکی سنگ آهکی به‌کاررفته در معماری میراث جهانی پاسارگاد

نوع مقاله : پژوهشی

نویسندگان

1 دانشگاه هنر اصفهان

2 دانشگاه اصفهان

3 دانشگاه گرانادا اسپانیا

4 ، دانشگاه گرانادا، اسپانیا

5 دانشگاه گرانادا، اسپانیا

چکیده

در این پژوهش به‌لحاظ ارزش والای آثار معماری سنگی ایران و ضرورت حفظ و نگه‌داری آنها برای آیندگان، پژوهشی بر ارتقای خواص مکانیکی سنگ آهکی (سنگ آهک ماسه‌دار) به‌کاررفته در معماری پاسارگاد از طریق استفاده از مادۀ نانوسیلیکات (SiO2) به‌عنوان استحکام‌بخش برای بهبود خواص مکانیکی سنگ و درنتیجه افزایش عمر این نوع سنگ‌‌ها انجام گرفت. در این راستا خواص جذب آب، ضریب نفوذپذیری آب، درصد تخلخل و آزمون‌های پیرسازی تسریعی از طریق استانداردهای اروپایی (UNE-EN) انجام گرفتند؛ علاوه‌بر آن تغییرات سرعت امواج التراسونیک در بافت سنگ‌ها طی آزمون‌های پیرسازی اندازه‌گیری شدند و هم‌چنین تغییرات سختی سطحی توسط دستگاه نیمه‌مخرب Micro-drilling موردارزیابی قرار گرفتند. نانوسیلیکات نرخ جذب آب و خشک شدن را حدوداً 11 درصد و جذب مویرگی آب را تا حدودی کاهش داد، اما ضریب نفوذپذیری آب نسبتاً بدون تغییر باقی ماند. درمقابل، تخلخل سنگ 14 درصد کاهش یافت و مقاومت سطحی آن 20 درصد افزایش پیدا کرد. ارتقای خصوصیات مکانیکی ازطریق افزایش سختی سطحی، افزایش مقاومت دربرابر پیرسازی‌های تسریعی و کاهش تخلخل از نتایج مثبت حاصل نانوسیلیکات در ارتقای خصوصیات مکانیکی و دوام سنگ آهکی پاسارگاد هستند.

کلیدواژه‌ها


عنوان مقاله [English]

Effectiveness Assessment of Nano Silicate Application to Improve Mechanical Properties of a Limestone Used in the Architecture of Pasargadae World Heritage Site

نویسندگان [English]

  • Atefeh Shekofteh 1
  • Hossein Ahmadi 1
  • Mehdi Yazdi 2
  • Anna Arizzi 3
  • Eduardo Molina 4
  • Giuseppe Cultrone 5
1 Art university of Isfahan
2 Isfahan University
3 University of Granada Spain
4 University of Granada Spain
5 University of Granada Spain
چکیده [English]

Abstract   In this study, according to the high value of stone architecture in Iran, an investigation to improve mechanical properties on a type of limestone (Sandy limestone) used in Pasargadae were done by Nano Silicate (SiO2) as a consolidation material. Thus, some mechanical properties such as water absorption, water vapor permeability, porosity and resistance to against aging tests have studied by using UNE-EN standards and Ultrasonic velocity as well as changes in superficial strength by Micro-drilling. Results show the rate of water absorption and water drying decrease about %11 and water capillarity slightly changed. In contrast, water vapor permeability remained almost the same. But, the porosity of stone decreased %14 as well as %20 increasing the superficial resistance. Hence the improving two properties of the stone (porosity and superficial resistance) by applying Nano Silicate are the advantages of this kind of material in order to increase sandy limestone durability used at Pasargadae World Heritage Site.

کلیدواژه‌ها [English]

  • Ultrasonic velocity
  • freez-thaw
  • Salt Crystallization
  • Nano silicate
  • Limestone
  • Pasargadae
  • Mechanical properties
  • Superficial Resistance
  • Consolidation
  • Accelerated aging
McAfee, P., "Stone Buildings: Conservation, Repair, Building",O'Brien Press, (1998).
2. Henry, A., ed., "Stone Conservation: Principles and Practice", Routledge, (2015).
3. Horie, C. V., "Materials for Conservation: Organic Consolidants, Adhesives and Coatings", Routledge, (2010).
4. De La Roij, R., "Composition Which is Intended for Use as an Additive for Cement", U.S. Patent No. 7, Pp. 316,744, (2008).
5. Shekofteh, A., Cultrone, G., Arizzi, A., Ahmadi, H., Yazdi, M. and Molina Piernas, E., "Identification of Stones Composition Used in Pasargadae World Heritage Site, Achaemenid Period, South of Iran", Proceeding in the. 41st international symposium on archaeometry (ISA2016), Kalamata, Greece, Pp.141(2016).
6. شکفته، عاطفه، احمدی، حسین، یزدی، مهدی، «مروری بر مواد پوشش‌دهنده (استحکام‌بخش‌های سطحی) در حفاظت سنگ‌های تاریخی و فرهنگی»، مطالعات در دنیای رنگ، ج. 6، ش. 2، (1395).
7. Favaro, M., Simon, S., Menichelli, C., Fassina, V. and Vigato, P.A., "The Four Virtues of the Porta della Carta, Ducal Palace, Venice: Assessment of the State of Preservation and Re-evaluation of the 1979 Restoration", Studies in Conservation, Pp.109-127, (2005).
8. Scherer, G. W. and Wheeler, G. S., "Silicate Consolidants for Stone", Key Engineering Materials, Vol. 391, Pp. 1-25. Trans Tech Publications, (2009).
9. Li, Hui, Mao-hua Zhang, and Jin-ping Ou., "Abrasion Resistance of Concrete Containing Nano-particles for Pavement", Wear, Vol. 260, Issue 11, Pp.1262-1266, (2006).
10. منیر عباسی، آرمین، «اثر نانوسیلیس و الیاف پلی‌پروپیلن در مقاومت سایشی بتن»، مهندسی عمران شریف، دورۀ 2-32، ش. 1/3، 130-127، (1395).
11. Li, H., Hui-gang X. and Jin-ping O., "A Study on Mechanical and Pressure-sensitive Properties of Cement Mortar with Nanophase Materials", Cement and Concrete research, Vol. 34, Issue 3, Pp. 435-438, (2004).
12. de Ferri, L., Lottici, P. P., Lorenzi, A., Montenero, A., & Salvioli-Mariani, E., "Study of Silica Nanoparticles–polysiloxane Hydrophobic Treatments for Stone-based Monument Protection", Journal of Cultural Heritage, Vol. 12, Issue 4, Pp.356-363, (2011).
13. Zornoza-Indart, A. and Paula Lopez-Arce., "Silica Nanoparticles (SiO 2): Influence of Relative Humidity in Stone Consolidation", Journal of Cultural Heritage, Vol. 18, Pp. 258-270, (2016).
14. Skinner, B., Stephen, J., Porter, C. and Park, J., "Dynamic Earth", Wiley, (2013).
15. Grassegger, G., "Decay Mechanisms of Natural Building Stones on Monuments-A Review of the Latest Theories", Werkstoffe und Werkstoffprüfung im Bauwesen, IWB, Stuttgart, (1999).
16. Martys, N. S. and Ferraris, C. F., "Capillary Transport in Mortars and Concrete", Cement and Concrete Research, Vol. 27, Issue 5, Pp. 747-760, (1997).
17. Nunes, C. and Sližkova, Z., "Hydrophobic Lime based Mortars with Linseed Oil: Characterization and Durability Assessment", Cement and Concrete research, Vol. 61, Pp.28-39, (2014).
18. Hall, C. and Hoff, W.D., "Water Transport in Brick, Stone and Concrete", CRC Press, (2011).
19. سعیدی، زهرا، «سنگ‌شناسی بناهای تاریخی پاسارگاد و معادن مربوطه، مرکز مطالعات، پژوهش و مرمت مجموعه میراث جهانی پاسارگاد»، آرشیو دفتر فنی پایگاه میراث جهانی پاسارگاد، منتشر نشده، (1384).
20. CTS, "Safety Data Sheet Regulation (EC) N. 1907/2006- reach", Catalog of product, (2010).
21. Wheeler, G., "Alkoxysilanes and the Consolidation of Stone", Getty Publications, (2005).
22. Franzoni, E., Graziani, G., and Sassoni, E., "TEOS-based Treatments for Stone Consolidation: Acceleration of Hydrolysis–condensation Reactions by Poulticing", Journal of Sol-Gel Science and Technology, Vol. 74, Issue 2, Pp. 398-405 (2015).
23. Franzoni, E., Graziani, G., Sassoni, E., Bacilieri, G., Griffa, M. and Lura, P., "Solvent-based Ethyl Silicate for Stone Consolidation: Influence of the Application Technique on Penetration Depth, Efficacy and Pore Occlusion",Materials and Structures, Vol. 48, Issue 11, Pp. 3503-3515, (2015).
24. Pinto, A.F. and Delgado Rodrigues, J., "Stone cConsolidation: The Role of Treatment Procedures", Journal of Cultural heritage, Vol. 9, Issue 1, Pp. 38-53, (2008).
25. Franzoni, E., Sassoni, E. and Graziani. G., "Brushing, Poultice or Immersion? The Role of the Application Technique on the Performance of a Novel Hydroxyapatite-based Consolidating Treatment for Limestone", Journal of Cultural Heritage, Vol. 16, Issue 2, Pp.173-184, (2015).
26. Pinto, A. F. and Delgado Rodrigues, J., "Impacts of Consolidation Procedures on Colour and Absorption Kinetics of Carbonate Stones", Studies in Conservation, Vol. 59, Issue 2, Pp.79-90, (2014).
27. UNE-EN 13755, "Natural Stone Test Methods. Determination of Water Absorption at Atmospheric Pressure", AENOR, Madrid, (2008).
28. UNE-EN 1936, "Natural Stone Test Methods. Determination of Real Density and Apparent Density, and of Total and Open Porosity", AENOR, Madrid, (2007).
29. Normal, Commissione. "Misura Dell’indice di Asciugamento (Drying Index)", Roma, CNR/ICR, Doc 29, Pp.88, (1991).
30. Cultrone, G., Torre, M.D.L., Sebastian, E. and Cazalla, O., "Evaluacion de la Durabilidad de Ladrillos Mediante Tecnicas Destructivas (TD) y No-destructivas (TND)", Materiales de Construccion, Vol. 53, Issue 269, Pp. 41-59, (2003).
31. UNE-EN 1925, "Natural Stone Test Methods. Determination of Water Absorption Coefficient by Capillarity", AENOR, Madrid, (2000).
32. UNI, E. 15803, "Conservation of Cultural Property- Test Methods- Determination of Water Vapour Permeability (dp)", Ufficial Spanish version of EN, 15803, (2009).
33. Delgado Rodrigues, J., "Stone Consolidation: Research and Practice", Proceeding in the Int. Symp. on Works of Art and Conservation Science Today, Vol. 1, (2010).
34. Delgado Rodrigues J., Pinto, A. F. and Rodrigues da Costa, D., "Tracing of Decay Profiles and Evaluation of Stone Treatments by Means of Microdrilling Techniques", Journal of Cultural Heritage, Vol. 3, Issue 2, Pp.117-125, (2002).
35. Delgado Rodrigues, J. and A. P. Ferreira Pinto., "Sampling and Characterisation Issues in the Study of a Stone Portal with Microdrilling", Proceeding of the Eu-Artech Seminar on Small Samples, Big Objects, Bayerisches Landesamt für Denkmalpflege (Publ.), Munchen., (2007).
36. Molina, E., Benavente, D., Sebastian, E. and Cultrone, G., "The Influence of Rock Fabric in the Durability of Two Sandstones Used in the Andalusian Architectural Heritage (Montoro and Ronda, Spain)", Engineering Geology, Vol. 197, Pp. 67-81, (2015).
37. Rodriguez-Navarro, C., Doehne, E. and Sebastian, E., "How Does Sodium Sulfate Crystallize? Implications for the Decay and Testing of Building Materials", Cement and concrete research, Vol. 30, Issue 10, Pp. 1527-1534, (2000).
38. Ruiz-Agudo, E., Mees, F., Jacobs, P. and Rodriguez-Navarro. C., "The Role of Saline Solution Properties on Porous Limestone Salt Weathering by Magnesium and Sodium Sulfates", Environmental geology, Vol. 52, Issue 2, Pp. 269-281, (2007).
39. Arizzi, A., Martinez-Martinez, J. and Cultrone, G., "Ultrasonic Wave Propagation through Lime Mortars: An Alternative and Non-destructive Tool for Textural Characterization", Materials and structures, Vol. 46, Issue 8, Pp.1321-1335, (2013).
40. Siegesmund, S., Weiß, T. and Vollbrecht, A., "Natural Stone, Weathering Phenomena, Conservation Ctrategies and Case Studies: Introduction", Geological Society, London, Special Publications, No. 205, (2002).
4 . Bager, D. H., "Freeze-thaw Damage and Water-uptake in Low Water/cement Ratio Concrete", Structural Engineering and Materials–A Centenary Celebration, Pp.119-130, (2000).
42. Hall, C. and Hoff, W. D., "Water Transport in Brick, Stone and Concrete", CRC Press, (2011).
43. Benavente, D., Lock, P., Del Cura, M.Á.G. and Ordoñez, S., "Predicting the Capillary Imbibition of Porous Rocks from Microstructure", Transport in Porous Media, Vol. 49, Issue 1, Pp.59-76, (2002).
44. Zhuravlev, L.T., "The Surface Chemistry of Amorphous Silica", Zhuravlev model. Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 173, Issue 1, Pp.1-38, (2000).
45. Flörke, O.W., Graetsch, H., Röller, K., Martin, B. and Wirth, R., "Nomenclature of Micro-and Non-Crystalline Silica Minerals", Neues Jahrbuch für Mineralogie, Abhandlungen, No. 163, Pp.19-42, (1991).
46. Price, C. A. and Doehne, E., "Stone Conservation: An Overview of Current Research", Getty Publications, (2011).
47. Doehne, E., "Salt Weathering: A Selective Review", Geological society, London, special publications, Vol. 205, issue 1, Pp. 51-64, (2002).
48. Angeli, M., Bigas, J.P., Menendez, B., Hebert, R. and David, C., "Influence of Capillary Properties and Evaporation on Salt Weathering of Sedimentary Rocks", Heritage Weathering and Conservation, Vol. 1, Taylor&Francis, Balkema, (2006).
49. Johannesson, B. F., "Prestudy on Diffusion and Transient Condensation of Water Vapor in Cement Mortar", Cement and Concrete Research, Vol. 32, Issue 6, Pp.955-962, (2002).
50. Quenard, D. and Sallee, H., "Water Vapour Adsorption and Transfer in Cement-based Materials: A Network Simulation", Materials and Structures, Vol. 25, Issue 9, Pp.515-522, (1992).
51. Yavuz, H., "Effect of Freeze–thaw and Thermal Shock Weathering on the Physical and Mechanical Properties of an Andesite Stone", Bulletin of Engineering Geology and the Environment, Vol. 70, Issue 2, Pp. 187-192, (2011).
52. Benavente, D., del Cura, M.G., Bernabeu, A. and Ordoñez, S., "Quantification of Salt Weathering in Porous Stones Using an Experimental Continuous Partial Immersion Method", Engineering Geology, Vol. 59, Issue 3, Pp. 313-325, (2001).
53. Beck, K. and Al-Mukhtar, M., "Evaluation of the Compatibility of Building Limestones from Salt Crystallization Experiments", Geological Society, London, Special Publications Vol. 333, Issue 1, Pp. 111-118, (2010).
54. Scherer, G. W., "Stress from Crystallization of Salt", Cement and concrete research, 34, No. 9, Pp. 1613-1624, (2004).
55. Weiss, T., Rasolofosaon, P. N. J. and Siegesmund, S., "Ultrasonic Wave Velocities as a Diagnostic Tool for the Quality Assessment of Marble", Geological Society, London, Special Publications, No. 205, Pp. 149-164, (2002).
56. Pamplona, M., Ahmad, A., Simon, S., Abel, E. and Theissen. A., "Ultrasonic Pulse Velocity-a Tool for the Condition Assessment of Outdoor Marble Sculptures", In Proceeding 8th Int. Symposium on the Conservation of Monuments in the Mediterranean Basin, (2010).
57. Yasar, E. and Erdogan, Y., "Correlating Sound Velocity with the Density, Compressive Strength and Young's Modulus of Carbonate Rocks", International Journal of Rock Mechanics and Mining Sciences, Vol. 41, No. 5, Pp. 871-875, (2004).
58. Cultrone, G., Luque, A. and Sebastian. E., "Petrophysical and Durability Tests on Sedimentary Stones to Evaluate their Quality as Building Materials", Quarterly Journal of Engineering Geology and Hydrogeology, Vol. 45, No. 4, Pp. 415-422, (2012).
CAPTCHA Image