مدلسازی عددی سه‌بعدی اندرکنش گسل شیب‌لغز و تونل با رویه بتنی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 واحد دانشگاهی گرمسار، دانشگاه صنعتی امیرکبیر، گرمسار، ایران

2 واحد دانشگاهی گرمسار، دانشگاه صنعتی امیرکبیر ، گرمسار، ایران

3 دانشکده مهندسی عمران و محیط زیست، دانشگاه صنعتی امیرکبیر، تهران، ایران

چکیده

در این مقاله تاثیر جابه‌جائی گسل شیب‌لغز معکوس بر تونلی عمود بر خط گسل در پلان با نرم‌افزار اجزای محدود پلکسیس سه‌بعدی مطالعه ‌شده‌ و اثر زاویه گسل، نوع خاک منطقه و عمق قرارگیری تونل بر "مسیر انتشار گسلش"، "نمودارهای جابه‌جائی سطح خاک" و "تغییر شکل و نیروهای وارد بر پوشش تونل" ارائه شده‌اند. نتایج تحلیل‌ها نشان می‌دهد که تونل باعث ایجاد نواحی تمرکز کرنش در خاک زیر خود و تا حد زیادی مانع از رسیدن جابه‌جائی گسلش به لایه‌های خاک بالاسر خود (در محور تونل) شده، حال آنکه موجب بالازدگی نسبی خاک در دو طرف آن در سطح زمین می‌شود. علاوه بر آن در تونل عمیق‌تر، نیروی وارده بر پوشش تونل (نیروی محوری و لنگر خمشی) در اثر جابجائی گسل بیشتر است. همچنین با آنالیز حساسیت برای کاهش اثر مرز، نسبت ابعادی مناسب برای مدلسازی اندرکنش تونل و گسل پیشنهاد شده‌است. بررسی‌ها نشان می‌دهد که نیروی محوری بخصوص در زوایای گسل ملایم به طول مدل حساس است حال آنکه لنگر خمشی در مدلسازی با ابعاد متعارف (4-5 برابر عمق لایه خاک) بطور مناسب قابل ارزیابی می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Three-Dimensional Numerical Modeling of Interaction of dip-slip Fault and Tunnels with Concrete Lining

نویسندگان [English]

  • Mohammad Amin Barfehee 1
  • Mahda Mortazavi Zanjani 2
  • abbas soroush 3
1 Garmsar Campus, Amirkabir University of Technology, Garmsar, Iran
2 Garmsar Campus, Amirkabir University of Technology, Garmsar, Iran
3 Department of Civil and Environmental Engineering, Amirkabir University of Technology, Tehran, Iran
چکیده [English]

In this paper, the effect of reverse dip-slip fault movement on a tunnel, being perpendicular to the fault plane in plan view, is modeled numerically with finite-element software, Plaxis 3D and the effect of factors such as fault dip angle, soil type and tunnel’s depth on “fault rupture path”, “ground surface displacements” and “deformation and forces in the tunnel lining” is presented. The results indicate that the presence of tunnel gives rise to zones of stain localization in the soil underneath the tunnel and somewhat prevents the rupture zone to reach the ground surface on its top (centerline of the tunnel) whereas it causes relative uplift on the ground surface on both sides. Moreover, in deeper tunnels, the impact of faulting on lining forces is more pronounced. Furthermore, to reduce the influence of the outer boundaries, performing sensitive analysis, appropriate dimensions are recommended for modeling the interaction of fault and tunnel. It is shown that axial force, especially in mild fault dip angles, is very sensitive to model length while bending moment can be correctly estimated by typical modeling dimensions (i.e., model length 4-5 times the soil layer height).

کلیدواژه‌ها [English]

  • fault rupture propagation
  • finite element numerical modeling
  • three-dimensional analysis
  • tunnel
  • concrete lining
[1] J.D. Bray, R.B. Seed, H.B. Seed, “Analysis of Earthquake Fault Rupture Propagation through Cohesive Soils”, Journal of Geotechnical Engineering, vol. 120, no. 3, pp. 562-580, 1994.
[2] J. Johansson, K. Konagai, “Fault Induced Permanent Ground Deformations-An Experimental Comparison of Wet and Dry Soil and Implications for Buried Structure”, Soil Dynamics and Earthquake Engineering, vol. 26, pp. 45-53, 2006.
[3] I. Anastasopoulos, G. Gazetas, M.F. Bransby, M.C.R. Davies, A. El Nahas, “Fault Rupture Propagation through Sand: Finite-Element Analysis and Validation through Centrifuge Experiments”, Journal of Geotechnical and Geoenvironmental Engineering, vol. 133, pp. 943-958, .2007.
[4] M.L. Lin, C.F. Chung, F.S. Jeng, “Deformation of Overburden Soil Induced by Thrust Fault Slip”, Engineering Geology, vol. 88, pp. 70-89, 2007.
[5] D. Loukidis, G.D. Bouckovalas, A.G. Papadimitriou, “Analysis of Fault Rupture Propagation through Uniform Soil Cover”, Soil Dynamics and Earthquake Engineering, vol. 29, pp. 1389-1404, 2009.
[6] M. Mortazavi Zanjani, A. Soroush, “Numerical Modeling of Fault Rupture Propagation through Two-Layered Sands”, Scientia Iranica; vol. 21, no. 1, pp.19-29, 2013.
[7] M. Mortazavi Zanjani, A. Soroush, “Numerical Modelling of Fault Rupture Propagation through Layered Sands”, European Journal of Environmental and Civil Engineering, vol. 23, no. 9, 1139-1155, 2019.
[8] M. Hazeghian, A. Soroush, “DEM Simulation of Reverse Faulting through Sands with the aid of GPU Computing”, Computers and Geotechnics, vol. 66, pp. 253-263, 2015.
[9] M. Hazeghian, A. Soroush, “DEM-Aided Study of Shear Band Formation in Dip-Slip Faulting through Granular Soils”, Computers and Geotechnics, vol. 71, pp. 221-236, 2016.
[10] M. Hazeghian, A. Soroush, “Numerical Modeling of Dip-Slip Faulting through Granular Soils using DEM”, Soil Dynamics and Earthquake Engineering, vol. 97, pp. 155-171, 2017.
[11] M. Hazeghian, A. Soroush, “DEM Simulation to Study the Effect of the Ground Surface Geometry on Dip-Slip Faulting through Granular Soils”, European Journal of Environmental and Civil Engineering, vol. 24, no.7, pp. 861-879 2020.
[12] M. Mortazavi Zanjani, A. Soroush, “Numerical Modeling of Reverse Fault Rupture Propagation through Clayey Embankments”, International Journal of Civil Engineering, vol. 11, no. 2, pp. 122-132, 2013.
[13] M. Mortazavi Zanjani, A. Soroush, M. Khoshini, “Two-Dimensional Numerical Modeling of Fault Rupture Propagation through Earth Dams under Steady State Seepage”, Soil Dynamics and Earthquake Engineering, vol. 88, pp. 60-71, 2016.
[14] M. Naeij, A. Soroush, Y. Javanmardi, “Numerical Investigation of the Effects of Embedment on the Reverse Fault-Foundation Interaction”, Computers and Geotechnics, vol. 113, 2019.
[15] M.H. Baziar, A. Nabizadeh, C.J. Lee, W.Y. Hung, “Centrifuge Modeling of Interaction between Reverse Faulting and Tunnel”, Soil Dynamics and Earthquake Engineering, Vol. 65, pp. 151-164., 2014.
[16] M. Rojhani, M. Moradi, A. Ghalandarzadeh, S.Takada, “Centrifuge Modeling of Buried Continuous Pipelines Subjected to Reverse Faulting”, Canadian Geotechnical Journal, vol. 49, pp. 659-670, 2012.
[17] M. Kiani, T. Akhlaghi, A. Ghalandarzadeh, “Experimental Modeling of Segmental Shallow Tunnels in Alluvial Affected by Normal Faults”, Tunnelling and Underground Space Technology, vol. 51, pp. 108-119, 2016.
[18] S. Joshi, A. Prashany, A. Deb, “Analysis of Buried Pipelines Subjected to Reverse Fault Motion”, Soil Dynamics and Earthquake Engineering, vol. 31, pp. 930-940, 2011.
[19] M. Hashemzadeh, A. Soroush, Z. Saffarzadeh Kermani, “Numerical Analysis of Behavior of Buried Steel Pipes Subjected to Dip Slip Faults”, 8th National Congress on Civil Engineering, Iran (Islamic Republic of), May 7-8, (2014).
[20] M. Ranjbarnia, M. Zaheri, D. Dias, “Three-Dimensional Finite Difference Analysis of Shallow Sprayed Concrete Tunnels Crossing a Reverse Fault or a Normal Fault: A Parametric Study”, Frontiers of Structural and Civil Engineering, vol. 14, pp. 998-1011, 2020.
[21] Plaxis, Inc. Plaxis Version 2017.01 user's manual, 2017.
[22] J.D. Bray, R.B. Seed, L.S. Clu, H.B. Seed, “Earthquake Fault Rupture Propagation through Soil”, Journal of Geotechnical Engineering, vol. 120, no. 3, pp. 543-561, 1994.
[23] M. Mortazavi Zanjani, A. Soroush, R. Solhmirzaei, “Effect of Mechanical Soil Properties on Fault Rupture Propagation through Granular Soils”, 15th  World Conference on Earthquake engineering, Lisbon, Portugal, (2012).
[24] A. Fazli, M. Mortazavi Zanjani, A. Soroush, “Investigating Mitigation Measures for Fault Rupture Hazard of Strike-Slip Faulting on Buried Pipelines by Numerical Modeling”, 13th International Congress on Civil Engineering, Iran, October 17-19, (2023), (In Persian)
CAPTCHA Image