ارائه مدل جریان عبوری عابران پیاده در تسهیلات پیاده شهری با استفاده از الگوریتم‌های فراابتکاری (مطالعه موردی: شهر رشت)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده عمران، دانشگاه آزاد اسلامی واحد علوم و تحقیقات.

2 عمران گرایش حمل‌ونقل، دانشگاه آزاد اسلامی واحد تهران شمال.

3 دانشکده مهندسی عمران، دانشگاه علم و صنعت ایران

4 گروه مهندسی عمران، دانشکده مهندسی، دانشگاه فردوسی مشهد، مشهد، ایران

5 گروه مهندسی عمران، دانشکده مهندسی، دانشگاه فردوسی مشهد، مشهد، ایران.

چکیده

رفتار عابران‌پیاده نقش مهمی در طراحی تسهیلات پیاده به خصوص در مناطق پرتردد ایفا می‌کنند. یکی از این خصوصیات رفتاری، سرعت راه رفتن آنان از پیاده‌روها و پیادهراهها شده می‌باشد؛ بنابراین مهم‌ترین اقدام قبل از هر چیز شناخت پارامترهای جریان عابران‌پیاده در هنگام عبور از تسهیلات مختلف شهری است. هدف از این پژوهش مدل‌سازی جریان عابران‌پیاده عبور از تسهیلات پیاده مختلف شهری (پیاده‌رو و پیادهراه) می‌باشد. از این‌رو با تصویربرداری از یک پیاده‌رو و یک پیادهراه، به جمع‌آوری اطلاعات 10210 عابرپیاده عبوری پرداخته شد. سپس با استفاده از مدل‌های رگرسیون و روش الگوریتم ژنتیک، روابط جریان عابران‌پیاده از قبیل سرعت، نرخ جریان و چگالی مدل‌سازی شد. نتایج نشان داد که دقت مدل‌ها برای تسهیلات مختلف شامل پیاده‌رو، پیادهراه با استفاده از الگوریتم ژنتیک دارای دقت پیش‌بینی بالاتری نسبت به روش رگرسیونی و به ترتیب برابر با 9451/0 و9062/0 می‌باشند؛ بنابراین می‌توان در این زمینه الگوریتم ژنتیک را به عنوان یکی از روش‌های فراابتکاری که دارای دقت بیشتری می‌باشد، به عنوان مدل برتر معرفی کرد.
 

کلیدواژه‌ها


عنوان مقاله [English]

modeling pedestrian flow in urban pedestrian facilities using meta-heuristic algorithms (Case study: Rasht city

نویسندگان [English]

  • Seyed Ebrahim Abdolmanafi Rokni 1
  • termeh vedadi 2
  • Seyed Amir Saadatjoo 3
  • Saeed Fatemi 4
  • Seyed Ali Ziaee 5
1 Department of Civil Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran
2 Department of Civil Engineering, Islamic Azad University, Tehran North Branch, Tehran, Iran.
3 Faculty of Civil Engineering, Iran University of Science and Technology
4 Department of Civil Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
5 Department of Civil Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.
چکیده [English]

Pedestrian behavior plays an important role in the design of pedestrian facilities, especially in high-traffic areas. One of these behavioral characteristics is the speed of their walking on sidewalks and sidewalks and the speed of crossing the width of urban thoroughfares at lighted intersections and marked crossings; Therefore, the most important step is to know the flow parameters of pedestrians when passing through various urban facilities. The aim of this study is to model the flow of pedestrians crossing various urban pedestrian facilities (sidewalks, sidewalks, intersections with and without lights). Therefore, by photographing a sidewalk and a sidewalk, a passage without lights and a crossroads with lights, 5031 pedestrian crossings were collected. Then, using regression models and genetic algorithm method, pedestrian flow relationships such as speed, flow rate and density were modeled. The results showed that the accuracy of the models for different facilities including sidewalks, sidewalks, lightless intersections and lighted intersections using genetic algorithm has a higher prediction accuracy than the regression method and is equal to 0.9451, 0.9062, 0.9682 and 0/9938 are; Therefore, in this field, genetic algorithm can be introduced as one of the meta-innovative methods that has more accuracy, as a superior model

کلیدواژه‌ها [English]

  • Pedestrian
  • speed
  • flow rate
  • regression
  • genetic algorithm method
  1. Bargegol, I., Amlashi, A. T., and Najafi Moghaddam Gilani, V., "Evaluation average discharge headway at near-side legs of signalized intersections", Journal UMP Social Sciences and Technology Management, 3, pp 670-675, (2015).
  2. Trolly, R.S., "Winning back public space", Sustainable Transport: Planning for Walking and Cycling in Urban Environments. Woodhead, Cambridge, pp 713-736, (2003).
  3. Bargegol, I. and Najafi Moghaddam Gilani, V., "Estimating delay of vehicles in nearside legs of the signalized intersections under expectation method in under-saturation conditions for isolated intersection", Trends Journal of Sciences Research, 2(4), pp 121-125, (2015).
  4. Papadimitriou, E., Theofilatos, A. and Yannis, G., "Patterns of pedestrian attitudes, perceptions and behaviour in Europe", Safety Science, 53, pp 114–122, (2013).
  5. Helbing, D., Johansson, A. and Al-Abideen, H., "Dynamics of crowd disasters: An empirical study", Physical Review, Vol.75, pp. 046109, (2007).
  6. Liu, W., Zhou, H. and He, Q., "Modeling Pedestrians Flow on Stairways in Shanghai Metro Transfer Station", International Conference on Intelligent Computation Technology and Automation, 2, pp. 263-267, (2008).
  7. Hongfei, J., Lili, Y. and Ming, T., "Pedestrian Flow Characteristics Analysis and Model Parameter Calibration in Comprehensive Transport Terminal", Journal of Transportation Systems Engineering Aand Information Technology, 9(5), pp 117-123, (2009).
  8. Chen, X., Ye, J., Jian, N., "Relationships and Characteristics of Pedestrian Traffic Flow on Confined Passageways", TRB, National Research Council, Washington, D.C., (2010).
  9. Plaue, M., Chen, M., Bȁrwolff, G. and Schwand, H., "Trajectory extraction and density analysis of intersecting pedestrian flows from video recordings", Technische Universität Berlin, (2011).
  10. Tang, Sh., Kwal, D. and Kitahara, T., "Study on Pedestrian's Speed and Density under the Mid-low Density: Comparison of Pedestrian Behavior on the Station Square between Chiba, Japan and Shanghai", China 26th annual congress, China, (2012).
  11. Rastogi, R., Ilango, T. and Chandra, S., "Pedestrian Flow Characteristics for Different Pedestrian Facilities and Situations", European Transport, Vol. 53, pp. 1-5, (2013).
  12. Shafabakhsh, Gh., Mohammadi, M. and Mirzanamadi, R., "Analysis of Pedestrians' Walking Speed in Iran's Sidewalks", Journal of Basic and Applied Scientific Research, 3(3), pp 172-182, (2013).
  13. Chandra, S., Rastogi, R., Vivek, R.D. and Ilango, T., "Pedestrian behaviour under varied traffic and spatial conditions", European Transport, 56, pp. 45-55, (2014).
  14. Das, P., Parida, M. and Katiyar, V.K., "Macroscopic Pedestrian Flow Modelling Using Ssimulation Technique", International Journal for Traffic & Transport Engineering,8(2), pp. 166-176, (2018).
  15. Golakiya, H.D., Patkar, M. and Dhamaniya, A., "Impact of midblock pedestrian crossing on speed characteristics and capacity of urban arterials", Arabian Journal for Science and Engineering, 10, pp 8675-8689. (2019).
  16. Zhou, X., Hu, J., Ji, X. and Xiao, X., "Cellular automaton simulation of pedestrian flow considering vision and multi-velocity",Physica A: Statistical Mechanics and its Applications, 514, pp 982-992, (2019).
  17. Sharifi, M.S., Song, Z., Esfahani, H.N. amd Christensen, K., "Exploring heterogeneous pedestrian stream characteristics at walking facilities with different angle intersections", Physica A: Statistical Mechanics and its Applications,540, pp 123112, (2020).
  18. Li, H., Zhang, J., Song, W. and Yuen, K.K.R., "A comparative study on the bottleneck pedestrian flow under different movement motivations", Fire Safety Journal, 120, pp. 103014, (2020).
  19. Bargegol, I., Gilani, V. N. M., & Farghedayn, S., "Analysis of the effect of vehicles conflict on pedestrian's crossing speed in signalized and un-signalized intersection", Advances in Environmental Biology, 245, pp. 502-510, (2014).
  20. Behbahani, H., Najafi Moghaddam Gilani, V., Amini, A., Kamboozia, N. and Hosseinian, S. M., "Fuzzy-neural analysis of pedestrian flow crossing urban intersections", 18th International Conference on Traffic & Transportation Engineering, (2020).
  21. Ahmed, A., Jalal, A. and Kim, K., "A novel statistical method for scene classification based on multi-object categorization and logistic regression", Sensors, 20(14) pp 38-71, (2020).
  22. Mullainathan, S., and Spiess, J., "Machine learning: an applied econometric approach", Journal of Economic Perspectives, 31(2), pp 87-106, (2017).
  23. Chen, X., "Traffic flow prediction at varied time scales via ensemble empirical mode decomposition and artificial neural network", Sustainability, 12(9): pp. 36-78, (2020).
  24. Bargegol, I., Najafi Moghaddam Gilani, V., and Jamshidpour, F., "Modeling pedestrian flow at central business district", Journal of UMP Social Sciences and Technology Management, 3(3), pp. 250-265, (2015).
  25. Bargegol, I., Najafi Moghaddam Gilani, V. and Jamshidpour, F., "Relationship between pedestrians’ speed, density and flow rate of crossings through urban intersections (case study: Rasht metropolis)", International Journal of Engineering,30(12), pp 1814-1821 (2017).
  26. Liu, W., Wang, Z., Liu, X., Zeng. N., Liu, Y., Alsaadi, F., "A survey of deep neural network architectures and their applications", Neurocomputing, Vol. 234, pp 11-26, (2017).
  27. Bargegol, I., and Najafi Moghaddam Gilani, V., "The effect of rainy weather on walking speed of pedestrians on sidewalks", Buletin Teknol Tanaman,12, pp 217-22, (2015).
  28. Bargegol, I., Taghizadeh, N., and Najafi Moghaddam Gilani, V., "Evaluation of pedestrians speed with investigation of un-marked crossing", Computational Science,Vol. 12, pp 150-5, (2015).
  29. Behbahani, H., Najafi Moghaddam Gilani, V., Samet, M. J., and Salehfard, R., "Analysis of crossing speed of the pedestrians in marked and unmarked crosswalks in the signalized and un-signalized intersections (case study: Rasht city)", Conference Series: Materials Science and Engineering, 245(4), pp 042014, (2017).
CAPTCHA Image