ارزیابی خواص مکانیکی بتن با جایگزینی سنگ‌دانه‌های طبیعی با سنگ‌دانه‌های ریزودرشت بازیافتی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده فنی و مهندسی، دانشگاه لرستان.

چکیده

سنگدانه‌های بتنی بازیافتی یکی از انواع سنگدانه‌های بازیافتی است که بیشترین فراوانی را نسبت به سایر سنگدانه‌های بازیافتی دارد. در این تحقیق با استفاده از جایگزینی سنگدانه‌های بتنی بازیافتی به ‌جای سنگدانه‌های طبیعی، خصوصیات مکانیکی این نوع بتن­ها مورد بررسی قرار گرفته است. جایگزینی سنگدانه‌های طبیعی با سنگدانه‌های بازیافتی در چهار درصد 0، 15، 30 و 45 انجام شد و این جایگزینی هم به ‌صورت مستقل (شن یا ماسه به‌صورت مجزا) و هم به ‌صورت همزمان (هم شن و هم ماسه با هم) انجام شد. با توجه ‌به استفاده 50 درصد شن و 50 درصد ماسه در طرح اختلاط مرجع و با جایگزینی درصدهای فوق­الذکر با سنگدانه‌های درشت و ریز بتنی بازیافتی تعداد 21 طرح اختلاط مورد استفاده قرار گرفت. نسبت آب به سیمان در همه طرح­های اختلاط ثابت نگه داشته و برابر با 42/0 در نظر گرفته شد. برای جبران کاهش مقاومت ناشی از جایگزینی سنگدانه‌های بازیافتی، از میکروسیلیس در درصدهای مختلف 7،5 و 15 و فوق روان­ کننده در طرح­های اختلاط استفاده شد. با انجام آزمایش‌های مختلف، خواص مکانیکی نمونه­های بتنی مورد بررسی قرار گرفت. نتایج نشان داد که بهترین طرح اختلاط از نظر مقاومت فشاری، طرح حاوی 5/7% میکروسیلیس و 15% شن بازیافتی، از نظر مقاومت کششی، طرح حاوی 5/7% میکروسیلیس و 45% شن بازیافتی، از نظر مقاومت خمشی، طرح حاوی 5/7% میکروسیلیس و 30% شن بازیافتی، طرح حاوی 15% میکروسیلیس و 15% شن بازیافتی مشخص شدند. با بررسی چندمتغیره خواص مکانیکی نمونه­های بتن، مشخص گردید که طرح­های اختلاط بازیافتی حاوی 15%، 30% شن بازیافتی و 45% ماسه بازیافتی با 5/7% میکروسیلیس و همچنین طرح اختلاط 15% ماسه بازیافتی با 15% میکروسیلیس، در بین طرح­های اختلاط بازیافتی، بیشترین مقدار مطلوبیت کلی را به خود اختصاص داده­اند.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of mechanical properties of concrete by replacing natural aggregates with fine and coarse recycled aggregates

نویسندگان [English]

  • Aref Sarhangi
  • Fereydoon Omidinasab
  • Ahmad Dalvand
Faculty of Engineering, Lorestan University, Khorramabad
چکیده [English]

Recycled concrete aggregates are one of the types of recycled aggregates that have the most abundance compared to other recycled aggregates. In this research, by using the replacement of recycled concrete aggregates instead of natural aggregates, the mechanical properties of this type of concrete have been investigated. The replacement of natural aggregates with recycled aggregates was done in four percentages of 0, 15, 30 and 45, and this replacement was done both independently (i.e. sand or gravel separately) and simultaneously (both sand and gravel together). According to the use of 50% sand and 50% sand in the reference mixing plan and by replacing the percentages with coarse and fine recycled concrete aggregates, 21 mixing plans were used. The ratio of water to cement was kept constant in all mixing plans and was considered equal to 0.42. To compensate for the decrease in strength due to the replacement of recycled aggregates, micro silica in different percentages of 7.5 and 15 and super plasticizers were used in the mixing designs. By performing various tests, the mechanical properties of concrete samples were investigated. The results showed that the best mixing design in terms of compressive strength is the design containing 7.5% micro silica and 15% recycled sand, in terms of tensile strength, the design containing 7.5% micro silica and 45% recycled sand, in terms of flexural strength, the design containing 7.5% micro silica and 30% recycled sand, the plan containing 15% micro silica and 15% recycled sand was determined. By examining the mechanical properties of concrete samples, it was determined that the recycled mixing plans contain 15%, 30% recycled gravel and 45% recycled sand with 7.5% microsilica, as well as the mixing plan of 15% recycled sand with 15% microsilica. , among the recycled mixing plans, they had the highest amount of overall utility.

کلیدواژه‌ها [English]

  • Recycled aggregate
  • natural aggregate
  • flexural strength
  • compressive strength
  • tensile strength
  1.  
  2. Limbachiya, M. Seddik Meddah, Y. Ouchagour, "Performance of portland/silica fume cement concrete produced with recycled concrete aggregate," ACI Materials Journal, vol. 109, pp. 91–100, 2012.
  3. K. Tamimi, J.A. Abdalla, Z.I. Sakka, "Prediction of long-term chloride diffusion of concrete in harsh environment," Construction and Building Materials, vol. 22, pp. 829–836, 2008.
  4. E.B. Cabral, V. Schalch, D.C. Molin, J.L.D. Ribeiro, "Mechanical properties modeling of recycled aggregate concrete," Construction and Building Materials, vol. 24, pp. 421–430, 2010.
  5. W. Tabsh, , A.S. Abdelfatah, "Influence of recycled concrete aggregates on strength properties of concrete," Construction and Building Materials, vol. 23, pp. 1163–1167, 2009.
  6. S. Abdelfatah, S.W. Tabsh, "Review of research on and implementation of recycled concrete aggregate in the GCC," Advances in Civil Engineering, 2011.
  7. Tavakoli, P. Soroushian, "Strengths of recycled aggregate concrete made using field-demolished concrete as aggregate," Material Journal, vol. 93, no. 2, pp. 178–181, 1996.
  8. K. Padmini, K. Ramamurthy, M. S. Mathews, "Influence of parent concrete on the properties of recycled aggregate concrete," Construction and Building Materials, vol. 23, no. 2, pp. 829–836, doi: 10.1016/j.conbuildmat.2008.03.006, 2009,
  9. B. Topçu, "Physical and mechanical properties of concretes produced with waste concrete," Cement and Concrete Research, vol. 27, no. 12, pp. 1817–1823, Dec., doi: 10.1016/S0008-8846(97)00190-7, 1997.
  10. T. Smith, "Recycled concrete aggregate - A viable aggregate source for concrete pavements," UWSpace. http://hdl.handle.net/10012/4900, 2010.
  11. C. Hansen, H. Narud, "Strength of recycled concrete made from crushed concrete coarse aggregate," oncrete International, vol. 5, no. 1, pp. 79–83, 1983.
  12. de Brito, N. Saikia, "Recycled aggregate in concrete: use of industrial," Construction and Demolition Waste, Springer Science & Business Media: Berlin/Heidelberg, Germany, vol. 1, ISBN 9781447145394, 2009.
  13. D. Nguyen, D.T. Nguyen, T.H. Cao, V.T. Phan, "Evaluating the possibility of replacing natural fine aggregates in concrete with recycled aggregates," Engineering, Technology & Applied Science Research, vol. 11, no. 6, pp. 7805-7808, 2021,
  14. M. Salem, E. G. Burdette, N. M. Jackson, "Resistance to freezing and thawing of recycled aggregate concrete," Material Journal, vol. 100, no. 3, pp. 216–221, 2003.
  15. Tam, X. Gao, C. Tam, "Microstructural analysis of recycled aggregate concrete produced from two-stage mixing approach," Cement and Concrete Research, vol. 35, pp. 1195–1203, doi: 10.1016/j.cemconres.2004.10.025, 2005.
  16. Lotfi, J. Deja, P. Rem, R. Mróz, E. Van Roekel, H. Van Der Stelt, "Mechanical recycling of EOL concrete into high-grade aggregates," Resources, Conservation and Recycling, vol. 87, pp. 117–125, doi: 10.1016/j.resconrec.2014.03.010, 2014.
  17. C. Limbachiya, E. Marrocchino, A. Koulouris, "Chemical–mineralogical characterization of coarse recycled concrete aggregate," Waste Management, vol. 27, pp. 201–208, 2007.
  18. Rahal, "Mechanical properties of concrete with recycled coarse aggregate," Building and Environment, vol. 42, pp. 407–415, 2007.
  19. Zhou, Z. Chen, "Mechanical properties of recycled concrete made with different types of coarse aggregate," Construction and Building Materials, vol. 134, pp. 497–506, 2017.
  20. Limbachiya, M.S. Meddah, Y. Ouchagour, "Use of recycled concrete aggregate in fly-ash concrete," Construction and Building Materials, vol. 27, no. 1, pp. 439-449, 2012.
  21. V. Silva, J. De Brito, R.K. Dhir "Establishing a relationship between modulus of elasticity and compressive strength of recycled aggregate concrete," Journal of Cleaner Production, vol. 112, pp. 2171–2186, 2016.
  22. Gomes, J. De Brito, "Structural concrete with incorporation of coarse recycled concrete and ceramic aggregates: durability performance," Materials and Structures, vol. 42, pp. 663–675, 2009.
  23. H. Younis, A.A. Amin, H.G. Ahmed, et al., "Recycled aggregate concrete including various contents of metakaolin: mechanical behavior," Advances in Materials Science and Engineering, vol. 2020, pp. 1–17, doi.org/10.1155/2020/8829713, 2020.
  24. K. Bui, T. Satomi, H. Takahashi, "Mechanical properties of concrete containing 100% treated coarse recycled concrete aggregate," Construction and Building Materials, vol. 163, pp. 496–507, 2018.
  25. L. Berndt, "Properties of sustainable concrete containing fly ash, slag and recycled concrete aggregate," Construction and Building Materials, vol. 23, pp. 2606–2613, 2009.
  26. , Dilbas, S. M. Sim, Ö. Çakir, "An investigation on mechanical and physical properties of recycled aggregate concrete (RAC) with and without silica fume," Construction and Building Materials, vol. 61, pp. 50–59, 2014.
  27. Ismail, K.H. Younis, S. Maruf, "Recycled aggregate concrete made with silica fume: experimental investigation," Civil Engineering and Architecture, vol. 8, pp.1136–1143, 2020.
  28. Hosseini, A.R. Khalo, M.M. M. Khodavirdi Zanjani, "Study on the construction of self-compacting concrete using recycled aggregates", Concrete Research Journal, third year/number on, 2008, (In Persin).
  29. Moghimi, J. Baranjian, K, Nemati, "Investigation of the mechanical properties of recycled concrete using crushed concrete," Second National Congress of Civil Engineering, Iran University of Science and Technology, Tehran, Iran, 2004, (In Persin).
  30. De Brito, J. Ferreira, J. Pacheco, D. Soares, M. Gurreiro, "Structural, material, mechanical and durability properties and behavior of recycled aggregates concrete," Journal of Building Engineering, vol. 6, pp. 1-16, 2016.
  31. Apurva, V.S. Fursule, Shingade, "Experimental study of concrete using recycled aggregate with nano silica," International Research Journal of Engineering and Technology, vol. 4, no. 8, pp. 950-953, 2017.
  32. ACI 318, "Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14)V, ACI Committee 318", American Concrete Institute, Farmington Hills, MI., 2014.
  33. ASTM C150/C150M-17., "Standard Specification for Portland cement," ASTM International, West Conshohocken, PA., 2017.
  34. D. J. Sanchez, P. A. Gutierrez, "Study on the influence of attached mortar content on the properties of recycled concrete aggregate," Construction and Building Materials, vol. 23, pp. 872–877, 2009.
  35. ASTM C125-19, "Standard Terminology Relating to Concrete and Concrete Aggregates," ASTM International, West Conshohocken, PA, 2019.
  36. ASTM C131/C131M-14, "Standard test method for resistance to degradation of small-size coarse aggregate by abrasion and impact in the Los Angeles machine,"
  37. ASTM C 39/C 39M-03, "Standard test method for compressive strength of cylindrical concrete specimens,"
  38. ASTM C 496/C 496M-11, "Standard test method for splitting tensile strength of cylindrical concrete specimens,"
  39. ASTM C1609/C1609M-19, "Standard test method for flexural performance of fiber-reinforced concrete (using beam with third-point loading),"
  40. W. Tabsh, A.S. Abdelfatah, "Influence of recycled concrete aggregates on strength properties of concrete," Construction and Building Materials, vol. 23, pp. 1163–1167, 2009.
  41. Senas, C. Priano, S. Marfil, "Influence of recycled aggregates on properties of self-consolidating concretes," Construction and Building Materials, vol. 113, pp. 498–505, 2016.
  42. H. Duan, C.S. Poon, "Properties of recycled aggregate concrete made with recycled aggregates with different amounts of old adhered mortars," Materials Design, vol. 58, pp. 19–29, 2014.
  43. M. Zabihi, H.R. Tavakoli, "Evaluation of monomer ratio on performance of GGBFS-RHA alkali-activated concretes," Construction Building Material, vol. 208, pp. 326– 332, 2019.
  44. Sengul, M. A. Tasdemir, "Compressive strength and rapid chloride permeability of concretes with ground fly ash and slag," Material Civil Engineering, vol. 21, pp. 494–501, 2009.
CAPTCHA Image